
,

SAND91 – 1634 • UC–405

Supersedes SAND84–0573 dated November 1984

Unlimited Release

Printed March 1992

ITS Version 3.0:
The Integrated TIGER Series of
Coupled Electron/Photon
Monte Carlo Transport Codes

J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer,
M. J. Berger

Preparedby
SandiaNationalLaboratories.:’
Albuquerque,New Mexico,87185andLkermore,California94550
fortheUnitedStatesDepartmentofEnergy
underContractDE-AC04-76DPO0789

.... . . ,,. ,,<~.,

.,

.’; :

..~.’,,.
:::’

, ,,.,>

. ~,‘!32’:?:”

Issuedby San&a NationalLaboratories,operatedforthe UnitedStates
DepartmentofEnergybySandiaCorporation.
NOTICE: Thisreportwas preparedasan accountofwork sponsoredby an
agencyoftheUnitedStatesGovernment.NeithertheUnitedStatesGovern-
ment norany agencythereof,nor any oftheiremployees,nor any oftheir
contractors,subcontractors,or theiremployees,makes any warranty,
expressorimplied,or assumesany legalliabilityor responsibilityforthe
accuracy,completeness,orusefulnessofany information,apparatus,prod-
uct,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringepri-
vatelyowned rights.Referencehereinto any specificcommercialproduct,
process,or serviceby tradename,trademark,manufacturer,or otherwise,
doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,
orfavoringby theUnitedStatesGovernment,anyagencythereof,orany of
theircontractorsor subcontractors.The views and opinionsexpressed
hereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovern-
ment,anyagencythereof,oranyoftheircontractors.

PrintedintheUnitedStatesofAmerica.Thisreporthas beenreproduced
directlyfromthebestavailablecopy.

AvailabIetoDOE andDOE contractorsfrom
OfficeofScientificandTechnicalInformation
P.O.Box62
Oak Ridge,TN 37831

Pricesavailablefrom(615)576-8401,FTS 626-8401

Availabletothepublicfrom
NationalTechnicalInformationService
U.S.DepartmentofCommerce
5285PortRoyalRd
Springfield,VA 22161

NTIS pricecodes
Printedcopy:A03
Microfichecopy:AO1

Category UC-405

SAND91-1634
(Revision of SAND84-0573)

Unlimited Release
Printed March 1992

ITS Version 3.0:
The Integrated TIGER Series of

Coupled Electron/Photon
Monte Carlo Transport Codes

J. A. Halbleib and R. P. Kensek
Simulation Technology Research Division

and
T. A. Mehlhorn, Target Physics Analysis Division

Sandia National Laboratories
Albuquerque, NM 87185

G. D. Valdez
Applied Methods, Albuquerque, NM 87108

S. M. Seltzer and M. J. Berger

Ionizing Radiation Division, Center for Radiation Research
National Institute of Standards and Technology, Gaithersburg, MD 20899

ABSTRACT

ITS is a powerful and user-friendly software package permitting
state-of-the-art Monte Carlo solution of linear time-independent
coupled electron/photon radiation transport problems, with or without
the presence of macroscopic electric and magnetic fields of arbitrary
spatial dependence. Our goal has been to simultaneously maximize

operational simplicity and physical accuracy. Through a
machine-portable utility that emulates the basic features of the CDC
UPDATE processor, the user selects one of eight codes for running on a
machine of one of at least four major vendors. The ease with which
this utility is applied combines with an input scheme based on
order-independent descriptive keywords that makes maximum use of
defaults and internal error checking to provide experimentalists and
theorists alike with a method for the routine but rigorous solution of
sophisticated radiation transport problems. Physical rigor is
maximized by employing the best available cross sections and sampling
distributions, and the most complete physical model for describing the
production and transport of the electron/photon cascade from 1.0 GeV

1

down to 1.0 keV. Flexibility of construction permits the more
sophisticated user to tailor the codes to specific applications and to
extend the capabilities of the codes to more complex applications
through simple update procedures. Version 3.0, the latest version of
ITS , contains (1) major improvements to the physical model, (2)
additional variance reduction via both internal restructuring and new
user options, and (3) expanded input/output capabilities. Moreover,
the general user friendliness of the software has been substantially
enhanced through increased internal error checking and improved code
clarity, maintainability, and portability.

2

ACKNOWLEDGEMENTS

We wish to express our gratitude to Pedro Andreo and his
colleagues at the Karolinska Institute and the University of
Stockholm, to Charles M. Snell and Hsiao-Hua Hsu of the Los Alamos
National Laboratory, to Nino R. Pereira and Steve Gorbics of Berkeley
Research Associates, and to Ronald L. Weitz and Maximo S. Lazo of
Science Applications International Corporation for their generous
cooperation in acting as “friendly users” for this revision of the
Integrated TIGER Series; to J. E. Powell, W. Beezhold, and J. R. Lee
whose encouragement and cooperation were essential to the success of
this work; to Bernadette Kirk of the Radiation Shielding Information
Center, ORNL, for her extensive testing of the revised system on an
IBM main frame; and to the Defense Nuclear Agency for their partial
funding of the development of the improved cross-section data at the
National Institute of Standards and Technology. Lastly, we wish to
thank Berta Armijo for assisting in the preparation of this docment.

This work was supported by the U. S. Department of Energy under
Contract No. DE-AC04-76DPO0789.

3

Preface to Version 3.0

Since its initial release, feedback from the user community has
been of great benefit to the development of the ITS code system. As a
consequence of this feedback, subsequent versions have seen major
improvements in physical accuracy, new capabilities, variance reduction,
and user friendliness.

This document is the first revision of SAND84-0573, which was the
sole documentation for the original version of ITS. Separate memoranda
dated April 29, 1987 and December 11, 1987 accompanied the releases of
Versions 2.0 and 2.1, respectively. These memoranda described new
capabilities only and in no way nullified any part of the original
document. However, the magnitude of the changes in Version 3.0 have
necessitated the current revision. These changes are best described in
terms of the two major software components of the ITS system, the source
code for the integrated cross-section generators and the source code for
the integrated Monte Carlo codes. This preface is primarily directed
toward those users who have used Versions 1.0 through 2.1, in order to
briefly outline all important operational changes and new capabilities
relative to the original version of this document. This discussion is of
less importance to new users who are starting with Version 3.0, since a
more detailed discussion is included within the main body of this
revision.

For completeness, we also include a discussion of the relatively
minor modifications covered in the two above-mentioned memoranda. We
will not discuss in any detail the extensive new trapping of illegal or
inconsistent input data, the numerous other improvements that were made
to the internal structure of the codes, or the improvements to the UPEML
processor. The latter are covered in the latest documentation of the
processor as referenced herein.

Monte Carlo Codes

The Monte Carlo codes were extensively rewritten. The core
modification, which led to important gains in variance reduction for a
large class of applications, was a reorganization of certain portions of
the logic for electron production and transport. A premium has been
placed on the earliest possible terminal processing of certain trapped
electrons and electrons that are rejected through Russian Roulette. A
simultaneous benefit was improved protection against the possibility of
obtaining misleading results in certain applications through overbiasing.

The output of line radiation leakage is much improved. The line
radiation is no longer included in the continuum photon spectra.
Instead, a complete and separate accounting of line radiation is
included. The leakage for each line is given explicitly, in integral
form as well as differential in angle. Furthermore, each line is
identified by the initial and final states of the atomic transition as
well as the transition energy.

These line radiation edits have been extended to photon flux as
well. Earlier versions only gave the energy spectra of the
volume-averaged fluxes. As part of the upgrade, the particle fluxes were
expanded to include angular distributions and doubly differential (energy
and angle) distributions so that the flux outputs are now as

4

comprehensive as the particle leakages. An ancillary result of this work
was development of a utility routine to facilitate obtaining doubly
differential distributions of other user-coded outputs.

With the addition of an option for photon-only transport, the ITS
system now includes a very fast and sophisticated set of photon transport
codes. This option is easily selected via the standard keyword execution
input and is much faster than coupled transport (up to an order of
magnitude for test problems). It should be used for problems with source
photons for applications in which (1) the finite ranges of the secondary
electrons are unimportant and (2) radiation by those electrons is
unimportant. Photon-only transport should also be useful for parameter
studies where approximate results are acceptable and the above conditions
are not rigorously satisfied, or for low-energy photon sources where the
ITS codes, because they are continuous-energy codes, have the advantage
of highly accurate simulation of line radiation.

Bona fide automatic subzoning has been implemented in the CYLTRAN
codes. The subzoning in Version 1.0 was not authentic because costly full
particle tracking was applied to subzones, even though their boundaries
were not material discontinuities. In Version 3.0, these boundaries are
used only for scoring spatially-dependent quantities such as charge and
energy deposition (and sometimes flux) within the corresponding input
zone. The power of this option lies in the fact that it not only
substantially reduces the burden of input data, as it did in Version 1.0,
but it also can result in significant reductions in run time and memory.
Moreover, with the inclusion of azimuthal dependence, the automatic
subzoning has been extended to three dimensions. Perhaps even more
important , because of the more costly tracking logic, this fully
three-dimensional automatic subzoning logic has been extended to input
zones of the ACCEPT codes that consist of simple bodies such as,
cylinders , spheres , and rectangular parallelepipeds of arbitrary
orientation.

The next-event estimator for photon leakage in the TIGER and
CYLTRAN codes has been extended to the ACCEPT codes. This option is now
automatically activated as a method of variance reduction for
differential leakage when the PHOTON-ESCAPE keyword is used. Otherwise,
the option is not used for the default prediction of integral leakage
unless explicitly activated via the keyword, NEXT-EVENT-ESCAPE.

The logic permitting biased bremsstrahlung production has been
modified so that this biasing can be based on any one of the materials in
the cross-section set. Previously, the biasing had to be based on the
first material, a technicality that often required the cross sections to
be rerun with the materials reordered.

The energy range for the cross-section sets in Version 1.0 was too
restrictive. In Version 2.0, both the cross-section generator and the
Monte Carlo codes were modified in order to permit generation and use of
cross sections that span any arbitrary energy range between 1.0 GeV and
1.0 keV. This improvement is useful either (a) because the problem to be
solved simply requires electron transport over an unusually large energy
range or (b) because a series of calculations in which there is a large
variation in the source energies can be carried out more efficiently
using a single cross-section set. Numerous modifications were required
to permit the use of the improved cross sections that are discussed

below.

5

Finally, some routines have been completely rewritten. For

example, the three-dimensional combinatorial-geometry routines of the
ACCEPT codes were rewritten for both improved efficiency and improved
clarity. Similarly, the enhanced ionization/relaxation subroutine
employed in the P codes was rewritten for improved clarity alone, with
some small penalty in execution time.

Cross-Section Generator Codes

Compared to Version 1.0, Version 3.0 contains major improvements to
the physical model. These are discussed in detail in Appendix M and
include the following:

1)

2)

3)

4)

There is a completely new set of bremsstrahlung cross sections
differential in photon energy that replace cross sections largely
based on the Born Approximation.
There is a much improved algorithm for sampling electron
collisional energy loss from the Landau/Blunck-Leisegang straggling
distribution.
New collisional stopping powers have been implemented. They make
use of an improved data base of mean excitation energies and an
improved algorithm for calculating the density-effect correction
for conductors and non-conductors. The radiation-loss stopping
powers have also been updated using the improved bremsstrahlung
cross sections.
The latest data base of photon cross sections from the National
Institute of Standards and Technology has been implemented. These
cross sections allow us to include coherent scattering of photons
in the Monte Carlo for the first time. Moreover, these cross
sections include binding effects for both coherent and incoherent
scattering.

The archaic Fortran from the pre-integration generators that had
been retained in Version 1.0 was completely rewritten using the BLOCK-IF
structure of the Fortran 77 standard. The parameterization of arrays is
now much more extensive, and literal constants have been parameterized to
facilitate the use of double precision. Changes to the names of common
variables across modules were eliminated, so that only a single literal
copy of each common block appears in the source code for the program
library. Finally, error checking of input data has been expanded.

6

TABLE OF CONTENTS

Page

I. Introduction ... 11

l.l History of the TIGER Series 11

l.20verview of the ITS Code Package 13

1.30verview of the Document 15

2. operation .. 16

2.1 Syntax .. 16

2.1.1 Syntax for Machine and Code Selection Input 16

2.1.2 Syntax for Code Execution Input 17

2.2 Running a Cross-Section Generating Code 18

2.2.1 Select a Cross-Section Generating Code 18

2.2.2 Execute the Cross-Section Generating Code 19

2.3 Running aMonte Carlo Code 22

2.3.lSelecta Monte Carlo Code 22

2.3.2 Execute the Monte Carlo Code 24

2.4 Suggestions for Efficient Operation 42

2.50utput .. 44

2.6 Availability .. 45

3. Machine Portable Update Processor - UPEML 46

3.1 Structure of the Program Libraries 46

3.1.lThe SOURCE Library 46

3.1.2 The Binary Old Program Library (OLDPL) 48

3.2 The Creation Run.. 48

3.3 Correction Runs 48

4. Monte Carlo Program File - ITS 51

4.1 Eight Codes ... 51

7

4.2 Four Machines ...

4.3 Free-Format Input.

4.4 Parameterization.

4.5 Embellishments ..

4.6 Additional Restructuring Subsequent to Version 1.0

5. Cross-Section Generating File - XGEN

6. Cross-Section Data File -XDATA

7. Concluding Remarks. ..

Appendix A: Installation

A.l Overview ..

A.2 Step-by-Step Installation Guide

Appendix B: Sample Input Streams

B.1 Sample Input for Running TIGER Code

B.2 Sample Input for Running CYLTRAN Code

B.3 Sample Input for Running ACCEPT Code

B.4 Sample Input for Running TIGERP Code

B.5 Sample Input for Running CYLTRANP Code

B.6 Sample Input for Running ACCEPTP Code

B.7 Sample Input for Running CYLTRANM Code

B.8 Sample Input for Running ACCEPTM Code

Appendix C: TIGER Codes - Geometry

C.l Problem Geometry.

C.2 Conventions for Escaping Particles

Appendix D: CYLTRAN Codes - Geometry

D.l Problem Geometry.<.........O..

D.2 Conventions for Escaping Particles

51

53

54

55

56

57

59

60

61

61

61

64

66

67

68

70

72

74

77

79

81

81

81

82

82

84

Appendix E: ACCEPT Codes - Geometry 85

E.l Problem Geometry.. 85

E.l.l Body Definition 85

E.1.2 Specification of Input Zones 89

E.1.3 Volume Specification 92

E.1.4 Material Specification 92

E.21nput Data .. 92

E.2.1 Body Data 92

E.2.21nput Zone Data. 93

E.2.3 Volume Data..., 95

E.2.4 Material Data.. 95

Appendix F: PCodes ... 96

Appendix G: MCodes ... 97

Appendix H: Biasing Options and Variance Reduction 99

H.l Trapped Electrons 99

H.2 Scaling of Bremsstrahlung Productions 100

H.3 Scaling the Probability for Electron Impact Ionization 100

H.4 Forced Photon Collisions (TIGER and CYLTRAN Codes) 100

H.5 Photon Path Length Stretching (ACCEPT Codes) 101

H.6 Zone Dependent Electron Cutoff Energies 101

H.7 Next-Event Estimator for Photon Escape 102

Appendix I: Plotting Capability 103

1.1 CYLTRAN and ACCEPT Code Geometries 103

1.2 Electron and Positron Trajectories (M Codes) 104

I.31mplementation of Plot Packages 104

Appendix J: Statistics. 105

9

Appendix K: Notes on Job Control Language (JCL)

K.l Generic Creation Runs

K.2 Generic Correction Runs

K.3Examples of IBMJCL

Appendix L: Automatic Subzoning

Appendix M: Cross-Section Improvements in Version 3.0

M.l Bremsstrahlung Cross Sections

M.2 Electron and Positron Stopping Powers

M.3Energy-Loss Straggling

M.4Photon Cross Sections

M.51ncoherent Photon Scattering

M.6Photon Coherent Scattering

Appendix N: Random Number Generators

N.l Range ..

N.2Access to the Seed.

N.3 Reproducibility

N.4 Cycle Length ...

N.5 Portable Random Number Generator

References ..

107

107

108

111

115

118

118

119

120

121

121

122

123

123

123

123

124

124

125

1. Introduction

The TIGER series of time-independent coupled electron/photon Monte
Carlo transport codes is a group of multimaterial and multidimensional
codes designed to provide a state-of-the-art description of the
production and transport of the electron/photon cascade. It is based
primarily on the ETRAN modell, which combines microscopic photon
transport with a macroscopic random walk 2 for electron transport.
Emphasis is on simplicity of application without sacrificing the rigor or
sophistication of the physical model.

1.1 History of the TIGER Series

Table I chronicles the development of the TIGER series, beginning
with the EZTRAN3 and EZTRAN24 codes in the early 1970’s. These codes
were basically user oriented versions of the ETRAN codes. They were
severely limited in their application to real physical problems because
of their restriction to a single homogeneous material. Overcoming this
limitation was the original motivation for the development of the TIGER
series .

TIGER5, CYLTRAN6, and ACCEPT7 are the base codes of the series and
differ primarily in their dimensionality and geometric modeling. TIGER
is a one-dimensional multilayer code . CYLTRAN employs a fully
three-dimensional description of particle trajectories within an
axisymmetric cylindrical material geometry and quite naturally finds
application in problems involving electron or photon beam sources.
ACCEPT is a general three-dimensional trans ort code that uses the

1combinatorial-geometry scheme developed at MAGI !9.

The original base codes were primarily designed for transport from
a few tens of MeV down to 1.0 and 10.0 keV for electrons and photons,
respectively . Furthermore, fluorescence and Auger processes in the base
codes are only allowed for the K-shell of the highest atomic number
element in a given material. For some applications it is desirable to
have a more detailed model of the low energy transport. In the TIGERPIO
and CYLTRANP1l codes, we added the more elaborate ionization/relaxation
model from the SANDYL code12 to the TIGER and CYLTRAN codes, and we
extended photon transport down to 1.0 keV (all member codes of the ITS
system allow transport over the range 1.0 GeV to 1.0 keV).

In CYLTRANM13, we combined the collisional transport of CYLTRAN
with transport in macroscopic electric and magnetic fields of arbitrary
spatial dependence using a Runga-Kutta-Fehlberg algorithm14 to integrate
the Lorentz force equations. An important modification of this
algorithm15 made possible the development of the ACCEPTM code16, which
combines the collisional transport of the ACCEPT code with macroscopic
field transport. SPHERE17 and SPHEM18 were two special purpose codes
that were restricted to multiple concentric spherical shells without and
with macroscopic field transport, respectively.

11

Table I: Chronology of TIGER Series Development

Code Date Released Dimension

EZTRAN

EZTRAN2

TIGER

CYLTRAN

CYLTMNM

TIGERP

SPHERE

ACCEPT

SPHEM

CYLTRANP

ACCEPTM

ITS 1.0

ITS 2.0

ITS 2.1

Sep 71

Ott 73

Mar 74

Mar 75

Jun 77

May 78

Jun 78

May 79

Jul 79

Late 81

Late 81

Dec 84

Mar 87

Dec 87

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

No

No

No

Yes

Yes

Yes

1-D

2-D/3-Da

1-D

2-D/3-Da

2-D/3-Da

1-D

1-D

3-D

l-D/3-Da

2-D/3-Da

3-D

allb

allb

allb

a The first dimension refers to the material geometry, while the
second dimension refers to the description of the particle
trajectories.

b The integrated system is not restricted to a single dimensionality.
The member codes are listed in Table II.

12

EZTRAN, EZTRAN2, and SPHEM are considered obsolete. Before ITS,
that still left us with eight separate code packages to maintain. Five
of these -- TIGER , CYLTRAN, ACCEPT, TIGERP and SPHERE -- had been
publicly released and were disseminated through the Radiation Shielding
Information Center at Oak Ridge National Laboratory. CYLTRANM, CYLTRANP
and ACCEPTM were not publicly released, but were maintained locally for
use throughout Sandia National Laboratories. Maintaining multiple code
packages had become quite burdensome for us as well as for users of the
codes. As a result, important modifications were not being implemented
in a timely fashion. Furthermore, the multiplicity of packages had
resulted in uneven development of the various codes such that each code
had unique features that had not yet been implemented in the other
codes.

In order to remedy this situation we developed ITS (the Integrated
TIGER Series), whose full implementation superseded all other versions
of the TIGER series codes.

1.2 Overview of the ITS Code Packaze

ITS consists of four essential elements:

1) XDATA --- The electron/photon cross-section data file
2) XGEN --- The cross-section generation program file
3) ITS --- The Monte Carlo program file
4) UPEML --- A machine portable update emulator

The heart of ITS is the Monte Carlo program file. Although the
structure of this file is discussed in detail below, we point out its
salient features here for those who only wish to run the codes. The
combined program library file was obtained by integrating the eight
codes of Table II in such a way as to minimize the repetition of coding
that is common to two or more of these codes. This process led quite
naturally to the development of a new code, ACCEPTP. In ACCEPTP, the
improved low-energy physics of the SANDYL code has been added to the
ACCEPT code. Those individual codes appearing in Table I, but not in
Table II, are of a more specialized nature than the others and are no
longer supported since their function is duplicated by at least one of
the ITS codes. Each of the eight member codes will run on any of four
machines -- CRAY, CDC, VAX (double precision) or IBM (double precision).
Although the codes have only been tested on these four machines, the use
of Fortran 77 (i.e. , American National Standard FORTRAN, ANSI X3.9-1978)
should facilitate installation on other machines as well. Additional
cross-section data and associated logic allows transport from 1.0 keV to
1.0 GeV19 for both electrons and photons. A new free-format, order-
independent input procedure based on descriptive keywords and maximum
use of defaults and internal error checking has resulted in a very
simple and user-friendly input scheme. Integration of the various codes
has resulted in the availability of additional common options for each
code. Also , a general restart oPtion has been added. In an attempt to
conform to modern programming practices, a complete line-by-line rewrite
of the codes was carried out with emphasis on implementing the top-down

13

BLOCK-IF structure of Fortran 77. Finally, options are available for
plotting the problem geometry in the CYLTRAN and ACCEPT codes, and, in
the case of the M codes, for plotting electron and positron trajectories
in regions where macroscopic fields exist.

Table II: ITS Member Codes

Enhanced
Standard Ionization/ Macroscopic
Codes Relaxation Fields

(P Codes) (M Codes)

TIGER TIGERP

CYLTRAN CYLTRANP CYLTRANM

ACCEPT ACCEPTP ACCEPTM

From top to bottom, the codes grouped by row in Table II will be
referred to as the TIGER codes, the CYLTRAN codes, and the ACCEPT codes,
respectively. From left to right, the codes grouped by column will be
referred to as the standard codes, the P codes (Appendix F) , and the M
codes (Appendix G) , respectively.

Since the initial release, 20 feedback from the user community has

been of great benefit to the development of the ITS code system. As a
consequence of this feedback, subsequent versions have implemented
important improvements in physical accuracy, new capabilities, variance
reduction, and user friendliness.

This revision for Version 3.0 is the first revision of the ori inal
documentation, 5SAND84-0573,20 of Version 1.0 of the ITS system. 0-23
Separate memoranda dated April 29, 1987 and December 11, 1987
accompanied the releases of Versions 2.0 and 2.1, respectively. These
memoranda described new capabilities only, relative to Version 1.0, and
in no way nullified any part of the original document. However, the
magnitude of the changes in Version 3.0 have necessitated the current
revision. For completeness, this revision also covers the relatively
minor modifications covered in the two above-mentioned memoranda, as
well as improvements to the UPEML processor. To recapitulate, this
revision represents the sole documentation of Version 3.0 of the ITS
system with an abbreviated discussion of Version 3.0 of the UPEML
processor.

14

Finally, we wish to emphasize that while the source code of the
program libraries explicitly provides for running the codes on the main
frames of four vendors, Version 3.0 of the ITS system has been
extensively tested only on Cray/UNICOS and VAX/VMS at Sandia National
Laboratories, and on IBM/MS-DOS at the Radiation Shielding Information
Center, Oak Ridge National Laboratory. Version 3.0 has not been tested
at all on CDC machines. Nevertheless, because users have successfully
ported Versions up through 2.1 to many machines, including workstations
and PCs, that run under a variety of operating systems, we believe
Version 3.0 will prove to be very portable as well.

1.3 Overview of the Document

This document is arranged in such a way that for relatively routine
problems the casual user need only acquaint himself with Section 2 once
the ITS package has been installed on the host computer as described in
Appendix A. Section 2 contains all of the information necessary for the
routine application of the member codes. Section 3 discusses the
machine portable update emulator. This section should be read by those
users who are not familiar with the syntax and operation of the CDC
UPDATE processor,24 or its equivalent, since the emulator employs that
syntax to select individual codes from the combined program library and,
if desired, to modify them. Subsequent sections may be ignored
altogether, or their perusal may be delayed until such time as a more
intimate knowledge of the structure of ITS becomes necessary. Sections
4, 5, and 6 discuss the structure of the Monte Carlo program file, the
cross-section generating program file, and the cross-section data file,
respectively. Concluding remarks are given in Section 7.

The ITS system has been extensively tested throughout its develop-
ment. Nevertheless , for an effort of this magn$tude -- involving
multiple machines, multiple codes, and numerous input options -- it is
impossible to be completely confident that no bugs exist (indeed, this
is never strictly possible with any piece of software). Consequently,
we solicit feedback from users on any difficulties they may encounter
and on any suggestions they may have for improving future versions of
the system.

15

2, Operation

It is assumed that ITS has been properly installed. This is
accomplished once and for all as described in Appendix A. Two basic
steps are required for solving any given problem:

(1) Generate cross sections by running the cross-section code
(2) Run the Monte Carlo code

A successful run of either a cross-section code or a Monte Carlo code
requires a job stream that sequentially performs the following two
tasks :

(1) Selects a machine and the code to be run on that machine
(2) Executes the code

Each task requires a separate input file in the job input stream.*
Using the sample input streams for the eight Monte Carlo member codes
shown in Appendix B as examples, we will discuss these inputs in the
order in which the four tasks are performed. Before doing so, however,
we must describe the syntax of these inputs.

2,1 Syntax

There are two kinds of syntax that must be followed. First, there
is the syntax for the input to the update emulator that is used to
select a machine and the code to be run on that machine. Secondly,
there is the syntax for the the free-format input used by the selected
code at execution time. These will be discussed separately. In order
to do SO, we adopt the convention that character strings enclosed in
square brackets ([]) represent information that is to be supplied by the
user.

2,1.1 Syntax for Machine and Code Selection Input --- This input
is used by the machine portable processor, UPEML,25** to process either
the cross-section generating program file, XGEN, or the Monte Carlo
program file, ITS. The input always begins with a command line that

* Although the Job Control Language for accomplishing these tasks will
very much depend on the local operating system, we provide some
guidance for setting up the job control stream in Appendix K. This
appendix also includes a discussion of all input/output units.

** The CDC UPDATE processor24 may also be used, as may any update
processor that recognizes the syntax of this input and the update
directives appearing in the XGEN and ITS SOURCE files (see Sec.
3.1). In the case of the CDC UPDATE processor, the function of the
command line is replaced by appropriate parameters in the UPDATE
command of the CDC Job Control Language.

16

indicates what processes should be performed, what input files to look
for, and which output files to create. The simplest command line to
initiate processing of the program file is:

F,P

where the “F” signifies that a compile file is to be created for use by
the Fortran compiler, while the “P” signifies that a binary old program
library (OLDPL) for either the cross-section generation program file or
the Monte Carlo program file (as described in Appendix A) exists as the
file “oldpl” for this run. The compile file will be written to the file
“cmpfil” . Additionally, other parameters as discussed in the UPEML
manua125 can be included on this line. For example, an “I” signifies
that the correction run information will be read from the file “srcdk”,
rather than from the default input device (typically unit 5). These
lines should begin in column 1. We assume here that the input stream of
update directives required by UPEML for selecting code and machine is in
the job stream.

where [name] is
to 7 characters
imbedded blanks

The first directive must always be

*IDENT, [name]

any alphanumeric string, beginning with a letter, of up
chosen by the user to identify this correction set. No
are permitted, and the asterisk must be in column 1.

This *IDENT directive is followed by one or more *DEFINE directives.
The syntax for the *DEFINE directives is

*DEFINE, [keyword]

where [keyword] is replaced by any of the keywords that select the
machine or the code to be run on that machine. Examples will be given
later in this section and in Appendix B.

Using this set of directives as input, UPEML performs what is
technically referred to as a correction run, as opposed to the creation
runs discussed in Appendix A. Each of the files XGEN and ITS consists
of multiple versions (for different machines) of multiple codes that
have been integrated into a single file. In these correction runs UPEML
provides us with a simple mechanism for selecting a particular version
of a particular code.

We have just described the normal input required for
machine and the code to be run on that machine. However,
becomes familiar with the Fortran coding of the XGEN and
can use UPEML to modify that coding in any way he
procedures for doing this are described in Sec. 3.3.

selecting the
once the user
ITS files, he
wishes. The

2.1.2 Wntax for Code Execution Input --- Having selected a code
and machine, the user must supply the necessary input for executing that
code for his particular problem. The input scheme employed in the
original unintegrated versions of the member codes of ITS was completely
discarded in Version 1.0 in favor of a free-format scheme that offers
many advantages to the user. Column counting is no longer necessary;
numerical data are merely separated by one or more blank spaces.

17

Options are selected through a system of descriptive keywords, making
the input file much more self-descriptive. The primary keywords are
order independent. Input is minimized by making maximum use of defaults
-- that is, options and\or parameter values assumed by the code when one
or more keywords do not appear in the input stream (e.g., if the input
file for XGEN is empty, l.O-MeV cross sections for aluminum are
calculated) . Furthermore , the keyword scheme permits the selection of
options via standard input that, in the original unintegrated versions,
could only be activated via the CDC UPDATE processor or its equivalent
(e.g., UPEML) . More internal processing makes input rules less rigid.
Finally, extensive internal error checking traps many input errors
immediately, thereby reducing the need for time-consuming debugs and
tracebacks.

The general syntax for code-execution input is:

[keyword] [parameter(l)] [parameter(2)] ...

That is, the user specifies a particular keyword and may follow it by
numerical parameters that are associated with that keyword. Though the
primary keywords are order independent, secondary keywords must follow
the primary keyword to which they are subordinate before the
specification of a new primary keyword. However, the secondary keywords
for a given primary keyword are also order independent. If fewer than
the maximum allowable number of parameters for a given keyword are
entered, those not entered will be set equal to zero. Consequently, in
this free-format input, only trailing parameters may be omitted.
Numerous examples of this syntax will be given below.

Finally, an asterisk appearing in column one of a line of input
will cause that line to be regarded as a comment, unless that line
represents mandatory input required by a particular keyword. This
feature permits the user to insert comments for improving the
readability of his input stream or to temporarily comment out certain
input rather than deleting it altogether.

2.2 Running a Cross-Section Generating Code

First, select a cross-section generating code; then compile,
link/load, and execute.

2.2,1 Select a Cross-Section Generating Code --- This selection
entails running UPEML on the saved program library (OLDPL) for XGEN
(Appendix A) in order to create the input file for the Fortran 77
compiler. The input stream required to accomplish this when UPEML is
run would look like:

{eor)
F,P
*IDENT, [name]

*DEFINE, [keyword(l)]
*DEFINE, [keyword(2)]
(eor)

18

The string (eor) specifies an end-of-record mark throughout this
document. UPEML will look for the OLDPL on the file “oldpl” ; the OLDPL
should be assigned to this name in the job control stream. Legitimate
keywords are listed in Table III. The directive

*DEFINE,PCODES

selects the coding that will calculate the special cross sections
required for the P codes; without this directive, coding for calculating
the standard cross sections is obtained by default. Other examples of
this UPEML input may be found between the first and second {eor)s in
each of the input streams shown in Appendix B.

Table III: Keywords Used in the Input for the Update Emulator, UPEML,
When Processing XGEN

Machine Selection Code Selection

CRAY PCODES
CDC
VAX
IBM

UPEML will summarize the output statistics for this run on the
logical unit designated as the system output device (typically unit 6).
A compile file is generated as the file “cmpfil” for subsequent
processing by the Fortran compiler.

2.2.2 Execute the Cross-Section Generating Code --- We can now
compile and link/load this compile file, and the result will be the
executable image of the cross-section program XGEN. This file can then
be executed to create cross-section input for the Monte Carlo program.
Program XGEN looks for the cross-section and atomic data file XDATA as
Fortran unit 9; XDATA should be assigned to this device in the Job
Control Language.

In addition, the user must provide problem specific input. Table

IV lists the primary keywords used for input to the cross-section
generating program along with their default values and associated
secondary keywords. A typical example of their use can be seen between
the second and third (eor)s of the input stream shown in Sec. B.1 of
Appendix B. In most cases only the primary keywords TITLE, MATERIAL,
and ENERGY will be needed.

The following is an alphabetic listing under which detailed
instructions on the function and usage of each keyword are given:

1. ECHO
Syntax: ECHO [parameter(l)]
Example: ECHO 1

19

Default: no echo
If “ECHO 1“ is inserted in the input stream, all subsequent card
images will be echoed to the terminal or to the job output
(whichever is appropriate).

2. ENERGY
Syntax: ENERGY [parameter(l)]
Example: ENERGY 2.5
Default: Maximum cross-section energy is 1.0 MeV
Maximum energy in MeV for which electron cross sections will be
calculated.

Table IV: Summary of Keywords Used for Input in the Execution of the
Cross-Section Generating Codes

KEYWORD

ENERGY
MATERIAL

element symbol(s)
CONDUCTOR or

NON-CONDUCTOR
GAS

DENSITY
DENSITY-WTIO
SUBSTEP

TITLE
STEP
PRINT-ALL

ECHO

DEFAULT

1.0 MeV
AL
required

See discussion under keywords.
normal state (pure elements only)
liquid/solid (compounds/mixtures)
normal density (g/cc) (pure elements only)
1.0
internal
no title
8
abbreviated cross-section tables will be
printed
off

3. MATERIAL
Syntax: MATERIAL [parameter(l)] [parameter(2)] ...
Example: MATERIAL TA 0.25 C 0.75
Default: Aluminum
Identifies unique material (pure element, compound or homogeneous
mixture) and the appropriate weight fractions (defaults to 1.0 for
pure elements) for which electron and photon cross sections are to be
calculated. This keyword is repeated for each unique material. DATA
arrays containing 100 atomic symbols (e.g., TA for tantalum) along
with corresponding default values for the electrical characterization
(conductor/non-conductor), mass density, and state (solid/liquid or
gas) at normal Pressure and temperature (zero “C and one atm) are
included in the code to simplify the input for pure materials. To
override these defaults or to construct compound materials the
following secondary keywords associated with this primary keyword may
be used.

20

i) element symbol(s)
Syntax: element symbol [parameter(l)]
Example: TA 0.25 Al 0.75
Default: no default; required
Except for pure elements where a blank for parameter(1) will
default to 1.0, each element symbol must be followed by a
single real number, parameter(l), which is the weight fraction
of that constituent. The weight fractions must sum to 1.0.

ii) CONDUCTOR/NON-CONDUCTOR
Syntax: NON-CONDUCTOR
Example: NON-CONDUCTOR
Default: A pure element with a Z of 1, 2, 7, 8, 9, 10, 17, 18,

35, 36, 53, 54, 85, or 86 is a non-conductor;
otherwise, the element is a conductor. A compound-
/mixture is a non-conductor if any one of its
constituent elements is a non-conductor by default;
otherwise, it is a conductor.

The only collective effect in the ITS Monte Carlo model is the
density-effect correction to the electronic stopping power.
The value of this correction depends on whether the transport
region is a conductor or non-conductor. The user may
explicitly define any material to be a conductor or a non-
conductor via the appropriate keyword. However, if a material
so defined as a conductor consists of constituent elements,
all of which are non-conductors by default (e.g., pure water),
the material will be redefined to be a non-conductor, and the
user will be so informed via a message in the output file.

iii) GAS
Syntax: GAS
Example: GAS
Default: Normal state for elements and liquid/solid for

compounds
This keyword is used to specify that this material is in a
gaseous state at normal pressure and temperature. The
material state is used in calculating the density effect
contribution to the electronic stopping power.

iv) DENSITY
Syntax: DENSITY [parameter(l)]
Example: DENSITY 2.0
Default: Normal density for elements -- no default for

compounds!
Density of the target material at normal Dressure and
tem~erature (g/cm3).

Example for compound target - CH
MATERIAL C .9225 H .0775

DENSITY .87
v) DENSITY-RATIO

Syntax: DENSITY-RATIO [parameter(l)]
Example: DENSITY-RATIO 0.5
Default: Density ratio is 1.0
Ratio of the actual density to the density of the target

material at normal pressure and temperature (used in

calculating density effect contribution to electronic stopping
powers).

21

vi) SUBSTEP
Syntax: SUBSTEP [parameter(l)]
Example: SUBSTEP 10
Default: Calculated internally as a function of atomic number
Number of random walk substeps into which each macroscopic

electron step is subdivided. The default values have been
empirically determined; other values should not be used
without careful consideration of their effects on the
condensed history model.2

4. PRINT-ALL
Syntax: PRINT-ALL
Example: PRINT-ALL
Default: Abreviated cross-section tables will be printed.
This keyword will cause all except differential electron
cross-sections to be printed out.

5. STEP
Syntax: STEP [parameter(l)]
Example: STEP 12
Default: Successive electron energies are related by Ei+l=2-l\8Ei
Parameter that determines spacing of electron energy grid and the
size of the macrosco ic electron steps.

7
Successive energies are

related by Ei+l=2-(/[Parameter(l)l)Ei. The default value has
been empirically determined; other values should not be used
without careful consideration of their effects on the condensed
history model.2

6. TITLE
Syntax: TITLE

[parameter(l)]
Example: TITLE

Cross sections for 5 MeV electrons in Tantalum
Default: No title
Indicates that the next line in the input file will contain a
title of up to 80 columns in length for the cross-section run.

The output from the execution of the cross-section generating code
is a file containing all the cross sections and sampling distributions
for both electrons and photons that will be needed by the Monte Carlo
code. This file is associated with Fortran unit 11.

2.3 Runninz a Monte Carlo Code

First, select a machine and the Monte Carlo code to be run on that
machine; then compile, link/load, and execute.

2.3.1 Select a Monte Carlo Code --- This selection entails running
UPEML on the saved program library for ITS (Appendix A) in order to
create the input file for the Fortran 77 compiler. The input stream
required to accomplish this when UPEML is run would look like:

22

(eor)
F,P
*IDENT ,
*DEFINE
*DEFINE

{eor)

name]
[keyword(l)]
[keyword(2)]

UPEML will look for the OLDPL on the file “oldpl” ; the OLDPL should be
assigned to this name in the job control stream. Legitimate keywords
are listed in Table V. Note that in Version 3.0, the keyword DOUBLE
need no longer be explicitly defined when running on VAX or IBM
machines. Other examples of this UPDATE input can be found between the
third and fourth {eor)s in the examples given in Appendix B.

Table V: Keywords Used in the Input for the Update Processor, UPEML,
When Processing ITS

Machine Selection Code Selection Options

CRAY TIGER PCODES
CDC CYLTRAN MCODES
VAX ACCEPT PLOTS
IBM RNG1

There are a few rules and restrictions on the use of these
keywords. One and only one of the keywords TIGER, CYLTRAN, or ACCEPT
must always be defined. At the present time, PCODES or MCODES, but
never both, must be defined in order to select one of the P codes or M
codes , respectively, from Table II. The use of PLOTS is restricted to
the CYLTRAN and ACCEPT codes; the plot utility is discussed in more
detail in Sec. 2.3.2. Invocation of the machine portable random number
generator via the RNG1 keyword is discussed in Appendix N.

Additional UPEML input is required for the M codes. Subroutine
BFLD must compute the cartesian components of the electric and/or
magnetic fields at an arbitrary location within a zone that has been
defined as having these fields (see keyword GEOMETRY in Sec. 2.3.2 for
CYLTRANM and ACCEPTM). A sample version of Subroutine BFLD is included
in the M codes. The user must replace or modify this routine so that it
will calculate the fields for his particular problem. To do this he
will probably need to use the *DELETE and *INSERT directives described

in Sec. 3.3. Examples of this additional UPEML input are found between
the third and fourth (eor)s of Sees. B.7 and B.8 of Appendix B.

The user may also wish to include the necessary UPEML input for
modifying the Fortran 77 PARAMETER statements. These modifications are
usually optional, but may be required when running complex ~roblems on
machines with limited fast memory. Moreover, the modifications ~
si.znificantlv reduce com~utin~ costs where the charging algorithm
depends on memory usage. Indeed, PARAMETER changes will affect CPU

23

times on some computing systems. Definitions of the Fortran 77
PARAMETERS have been placed at the top of the ITS file for the
convenience of the user, and the PARAMETER statements themselves appear
immediately thereafter. On execution, the ITS member codes provide the
user with a comparison of memory requirements vs allocations in order to
assist him in making the modifications. Examples of Fortran 77
PARAMETER modifications are shown in Sec. B.6 of Appendix B.

UPEML will summarize the output statistics for this run on the
logical unit designated as the system output device (typically unit 6).
A compile file is generated as the file “cmpfil” for subsequent
processing by the Fortran compiler.

2.3.2 Execute the Monte Carlo Code --- We can now compile and
link/load the compile file and the result will be the executable image
of the Monte Carlo program that has been selected. This file can then
be executed to solve the electron/photon transport problem. Program ITS
looks for a cross-section file that has been previously created by the
cross-section generating code. This cross-section file is associated
with Fortran unit number 11; this assignment should be made in the job
control stream.

In addition, the user must provide problem specific input. Table
VI lists the primary keywords used for input to the Monte Carlo program
along with their default values. In order to facilitate their use, they
have been organized into the five functional categories shown in the
table . Typical examples of their use can be seen after the fourth
(eor)s of the input streams shown in Appendix B.

The following is an alphabetic listing under which detailed
instructions on the function and usage of each of the keywords are
given:

1. BATCHES
Syntax: BATCHES [parameter(l)]
Example: BATCHES 20
Default: 10 batches
Number of batches of primary particles to be run. The total
number of histories is divided into [parameter(l)] batches
containing an equal number of source particles in order to obtain
estimates of statistical uncertainties. Accuracy of the estimates
degrades substantially for fewer than 10 batches. Although
increasing the number of batches improves this accuracy (for a
given total number of histories), it also increases the overhead
(run time).

24

Table VI: Summary of Primary Keywords Used for Input in the Execution of
the Monte Carlo Codes

GEOMETRY

ELECTRONS or PHOTONS
ENERGY or SPECTRUM
POSITION

DIRECTION
CUTOFFS

ELECTRON-ESCAPE
ELECTRON-FLUX
PHOTON-ESCAPE
PHOTON-FLUX
PULSE-HEIGHT

ECHO
TITLE
HISTORIES
PLOTSa
TRAP-ELECTRONS

SCALE-BREMS

BATCHES
DUMP
RESTART
PRINT-ALL
RANDOM-NUMBER
NEW-DATA-SET
SCALE-IMPACT

LEEcl
$+** GEOMETRY ****

required
**** SOURCE ****

electron source
1.0 MeV monoenergetic
point source at origin for TIGER and ACCEPT
codes or on axis at the minimum-z boundary of
the problem geometry for the CYLTRAN codes
monodirectional source in positive-z direction
electrons: 5% of maximum energy
photons: 0.01 MeV
**** OUTpUT OpTIONS ****

off
off
off
off
off

$A OTHER COMMONLY

off
blank title

USED OPTIONS ****

1000 histories
no plots
no check on trapping for electrons with energies
greater than the zone-dependent cutoff
natural bremsstrahlung production

**** OTHER RARELY USED OPTIONS ****

10 batches
off
no restart
print only final batch output
machine default
1 run
20% of bremsstrahlung scaling if SCALE-BREMS is
used; otherwise, natural electron impact

ionization
NEXT-EVENT-ESCAPE off unless PHOTON-ESCAPE keyword is used
NO-COHERENT photon coherent scattering is simulated
NO-INCOH-BINDING binding effects in incoherent scatter-

ing are included

a CYLTRAN and ACCEPT codes

25

2. CUTOFFS
Syntax: CUTOFFS [parameter(l)] [parameter(2)]
Example: CUTOFFS 0.10 0.01
Default: [parameter(l)] -- global electron cutoff energy equals 5%

of maximum source energy
[parameter(2)] -- photon cutoff energy equals 0.01

[parameter(l)] and [parameter(2)] are the global cutoff energies
(MeV) at which electron and photon histories are terminated,
respectively.

This electron cutoff energy is the global cutoff; the cutoffs in
individual zones may be raised above this value as described under
the GEOMETRY keyword. When an electron falls below the cutoff
energy in a given zone, a check is first made to see if it is
trapped in the sense described under keyword TRAP-ELECTRONS. If
so , the history is terminated via on-the-spot deposition of charge
and energy. Otherwise, except for the M codes, a final
calculation of non-local energy and charge deposition is made
based on the residual range of the electron. For either of the M
codes , a relatively low electron cutoff energy should be used
because the history is always terminated via on-the-spot
deposition of the charge and remaining energy of the electron.

With the default dimensioning in the codes, the electron cutoff
must be greater than or equal to the maximum energy for which
electron cross sections have been calculated divided by 244
(assuming default STEP parameter in Sec. 2.2.2) or 0.001 MeV,
whichever is the larger. For photons the residual energy is
assumed to be deposited on the spot. The photon cutoff must be ~
0.001.

The default energy range spanned by the electron cross-section
sets in Version 1.0 was sometimes too restrictive, and an expanded
energy range could only be obtained through relatively cumbersome
code modifications using the UPEML processor. Starting with
Version 2.0, both the cross-section generator and Monte Carlo
codes were modified in order to permit generation and use of cross
sections that span an arbitrary energy range between 1.0 GeV and
1.0 keV. This improvement is useful either (a) because the
problem to be solved simply requires electron transport over an
unusually large energy range or (b) because a series of Monte
Carlo calculations in which there is a large variation in the
source energies can be carried out more efficiently using a single
cross-section set. In order to invoke this capability, the UPEML
processor must be used to increase Fortran parameters INX and
INMAX in the cross-section generator and Monte Carlo codes,
respectively. An example of these Fortran parameter modifications
is shown in Sec. B.6 of Appendix B, even though the modification
is not necessary for that particular problem. The default value
of both parameters, which must be multiples of 8, is 64. INX can
be increased until the electron cross-section energy grid extends
down to or below the cutoff value desired by the user (> 1 keV) in
the Monte Carlo runs. The minimum value of INMAX to be used in

26

the Monte Carlo codes and the minimum value of the cross-section
energy list are given in the output of the cross-section generator
as NMAX and T(NMAX+l), respectively.

3. DIRECTION
Syntax: DIRECTION [parameter(l)] (TIGER codes)

DI~~CTION [parameter(l)] [parameter(2)]
(CYLTRAN and ACCEPT codes)

Example: DIRECTION 45.0 (TIGER codes)

DIRECTION 45.0 135.0 (CYLTRAN and ACCEPT codes)

Default: reference direction is positive z direction
This keyword defines the source reference direction.
[parameter(l)] and [parameter(2)] (not needed for TIGER codes) are
the spherical polar angles 0 and ~, respectively, in degrees, that
define the reference direction. The meaning of source parameters

specified by the POSITION and DIRECTION keywords is illustrated in
Fig. 1. In the absence of either of the following secondary key-

Z

t
SOURCE
RADIUS

x

REFERENCE
POSITION

I
1 I

/
WY

II /
/ I I /

I
/

II
/

/
/

/

i

i
\\L’

D

\——— ——— ——— ——— ——— ——

/ 4
/’

Figure 1: Illustration of Source Parameters Defined by the POSITION
and DIRECTION Keywords

27

words associated with this primary keyword, the source angular
distribution defaults to a monodirectional source defined by the
reference direction.
ISOTROPIC
Syntax: ISOTROPIC [parameter(l)]
Example: ISOTROPIC 45.0
Default: no isotropic distribution
Defines angular distribution of source particles as being
isotropic with respect to the reference direction. If the
parameters associated with the DIRECTION keyword are left
blank, the default reference direction is assumed. The
distribution is truncated at an angle of [parameter(l)] in
degrees. The default value for [parameter(l)] is 90.0; i. e.,
a 2X isotropic source.

COSINE-IAW
Syntax: COSINE-LAW [parameter(l)]
Example: COSINE-LAW 45.0
Default: no cosine-law distribution
Defines angular distribution of source particles as being
proportional to the cosine of the angle with respect to the
reference direction. If the parameters associated with the
DIRECTION keyword are left blank, the default reference
direction is assumed. The distribution is truncated at an
angle of [parameter(l)] in degrees. The default value for
[parameter(l)] is 90.0; i. e., a 2n cosine-law source.

4. DUMP
Syntax: DUMP
Example: DUMP
Default: no dump
If the DUMP keyword is present, a dump file will be written after
each batch to Fortran unit 10. If the dump file is to be used for
a subsequent restart (see keyword RESTART), it must be saved.

5. ECHO
Syntax: ECHO [parameter(l)]
Example: ECHO 1
Default: no echo
If “ECHO 1“ is inserted in the input stream, all subsequent card
images will be echoed to the terminal or to the job output
(whichever is appropriate).

6. ELECTRONS
Syntax: ELECTRONS
Example: ELECTRONS
Default: electron source if neither ELECTRONS nor PHOTONS keyword

is used
This keyword defines the source particles to be electrons rather
than photons.

7. ELECTRON-ESCAPE
Syntax: ELECTRON-ESCAPE
Example: ELECTRON-ESCAPE

28

Default: electron escape not tallied
This keyword signals that electron escape is to be tallied. The
following are secondary keywords associated with this primary

keyword that describe the bin structure used in tallying electron
escape.

i) NBINE
Syntax: NBINE [parameter(l)] [keyword]
Example: NBINE 5 USER

0.8 0.5 0.2 0.1 0.05
Default: 10 bins of equal width
[parameter(l)] is the number of energy bins; if omitted,
10 will be assumed. If [keyword] is not specified, equal
width bins are used. Choices for [keyword] are:
a) LOG -- Logarithmic grid spacing with

Ei+l=2-1/8Ei.
b) USER -- User defined energy grid: code will then read

the lower bound (MeV) for the number of energy
bins specified by [parameter(l)] in descending
order as in the above example. The maximum

lower bound must be less than the maximum
source energy.

For either of these tertiary keywords, the user must
insure that the lowest energy is less than or equal to the
global electron cutoff (if less than, the grid will be
truncated).

ii) NBINT
Syntax: NBINT [parameter(l)] [keyword]
Example: NBINT 5 USER

10.0 30.0 90.0 135.0 180.
Default: 18 bins of 10 degrees each up to 180 degrees
[parameter(l)] is the number of polar angle bins; if
omitted, 18 will be assumed. If [keyword] is not
specified, equal width bins from 0.0 to 180.0 degrees will
be defined. In this case, [parameter(l)] must be even for
the TIGER and CYLTRAN codes in order to unambiguously
distinguish emission from the transmission and reflection
surfaces as defined in Appendices C and D. The only
choice for [keyword] is:
a) USER -- User defined angle grid: code will then read

the upper bounds (degrees) for the number of
angle bins specified by [parameter(l)] in
ascending order as in the above example. The

largest value must be 180.0, and the value
90.0 must also be included for the TIGER and
CYLTRAN codes in order to unambiguously
distinguish emission from the transmission and
reflection surfaces.

iii) NBINP (CYLTRAN and ACCEPT only)
Syntax: NBINP [parameter(l)] [keyword]
Example: NBINP 6 USER

10.0 30.0 75.0 120.0 200.0 360.0
Default: 1 bin of 360.0 degrees

29

[parameter(l)] is the number of azimuthal angle bins; if
omitted, 1 will be assumed. If [keyword] is not
specified, equal width bins from 0.0 to 360.0 degrees will
be defined. The only choice for [keyword] is:
a) USER -- User defined angle grid: code will then read

the upper bounds (degrees) for the number of
angle bins specified by [parameter(l)] in
ascending order as in the above example. The
largest value must be 360.0.

WARNING: Because azimuthal scoring of escaping radiation is
only rarely requested, the azimuthal dimension of the escape
arrays has been suppressed to the default value of one bin
in order to save memory. Consequently, if the keyword NBINP
is used to obtain more than one azimuthal bin, the user must
increase the dimension of the azimuthal arrays by using the
UPEML processor to increase the value of the parameter IKMAZ
(IKPMAZ for photon escape) as defined near the top of the
ITS file.

Note that the primary keyword alone, with no other parameters or
keywords, will result in the calculation of electron escape using
the default bin structures.

8. ELECTRON-FLUX
Syntax: ELECTRON-FLUX [parameter(l)] [parameter(2)]
Example: ELECTRON-FLUX 3 5
Default: electron flux is not tallied
This keyword signals that electron flux is to be tallied in all
subzones for input zones [parameter(l)] through [parameter(2)].
The automatic subzoning features of the ITS codes are discussed in
more detail in Appendix L. If either parameter is omitted or O,
flux will be calculated in all zones. Calculation of electron
flux in zones where macroscopic fields have been specified is not
allowed. The user must insure that the zone dependent electron
cutoff energies (see keyword GEOMETRY) for zones [parameter(l)]
through [parameter(2)] are all equal. The following are secondary
keywords associated with this primary keyword that describe the
bin structure used in tallying electron flux.

i) NBINE
Syntax: NBINE [parameter(l)] [keyword]
Example: NBINE 5 USER

0.8 0.5 0.2 0.1 0.05
Default: 10 bins of equal width
[parameter(l)] is the number of energy bins; if omitted,
10 will be assumed. If [keyword] is not specified, equal
width bins are used. Choices for [keyword] are:
a) LOG -- Logarithmic grid spacing with

Ei+l=2-1/8Ei.
b) USER -- User defined energy grid: code will then read

the lower bounds (MeV) for the number of
energy bins specified by [parameter(l)] in
descending order as in the above example.

30

The maximum lower bound must be less than the
maximum source energy.

For either of these tertiary keywords, the user must
insure that the lowest energy of the energy grid is less
than or equal to the common zone-dependent cutoff energy
(if less than, the grid will be truncated) for the zones
where flux is to be calculated.

ii) NBINT
Syntax: NBINT [parameter(l)] [keyword]
Example: NBINT 5 USER

10.0 30.0 70.0 100.0 180.0
Default: 6 bins of equal width from 0.0 to 180.0 degrees
[parameter(l)] is the number of polar angle bins; if
omitted, 6 will be assumed. If [keyword] is not
specified, equal width bins from 0.0 to 180.0 degrees will
be defined. The only choice for [keyword] is:
a) USER -- User defined angle grid: code will then read

the upper bounds (degrees) for the number of
angle bins specified by [parameter(l)] in
ascending order as in the above example. The
largest value must be 180.0.

iii) NBINP (CYLTRAN and ACCEPT only)
Syntax: NBINP [parameter(l)] [keyword]
Example: NBINP 6 USER

10.0 30.0 75.0 120.0 200.0 360.0
Default: 1 bin of 360 degrees
[parameter(l)] is the number of azimuthal angle bins; if
omitted, 1 will be assumed. If [keyword] is not specified,
equal width bins from 0.0 to 360 degrees will be defined.
The only choice for [keyword] is:
a) USER -- User defined angle grid: code will then read the

upper bounds (degrees) for the number of angle
bins specified by [parameter(l)] in ascending
order as in the above example. The largest value
must be 360.0.

WARNING: Because azimuthal scoring of flux radiation is only
rarely requested, the azimuthal dimension of the flux arrays has
been suppressed to the default value of one bin in order to save
memory. Consequently, if the keyword NBINP is used to obtain
more than one azimuthal bin, the user must increase the
dimension of the azimuthal arrays by using the UPEML processor
to increase the value of the parameter IKFMAZ (IKFMZP for photon
flux) as defined near the top of the ITS file.

Note that the primary keyword alone, with no other parameters or
keywords, will result in the calculation of flux in every input
zone of the problem (excluding the escape zone of the ACCEPT
codes) using the default bin structures.

9. ENERGY
Syntax: ENERGY [parameter(l)]
Example: ENERGY 2.0

31

Default: l.O-MeV monoenergetic source if neither the ENERGY nor
SPECTRUM keyword is used

This keyword specifies a monoenergetic source of energy
[parameter(l)] in MeV.

10. GEOMETRY

This keyword signals the beginning of
choice from among the following three
member codes of ITS has been selected.

10a. TIGER codes (see Appendix C)
Syntax: GEOMETRY [parameter(l)]

the geometry information. The
usages depends on which of the

[parameter(2)] [parameter(3)] ... [parameter(6)]

Example: GEOMETRY 3
3 1 0.1 0.03 0.4
1 10 12.0
2 5 0.15

Default: no default; required for TIGER
[parameter(l)] is the number of input layers. Immediately after
the keyword line there must follow a series of [parameter(l)]
lines, one for each layer, containing [parameters(2)] through
[parameter(6)] which specify the material, the number of subzones,
the layer thickness in cm, the layer-dependent electron cutoff
energies in MeV (see Sec. H.6 of Appendix H for more detail), and
the photon forced interaction probabilities (see Sec. H.4 of
Appendix H for more detail), respectively. These parameters are
described in more detail in Appendix C. When the trailing fields
for the last two parameters are left blank (normal), the
layer-dependent cutoff will default to the global electron cutoff
energy (see primary keyword CUTOFFS), and there will be no forcing
of photon interactions.

10b. CYLTRAN codes (see Appendix D)
Syntax: GEOMETRY [parameter(l)]

[parameter(2)] [parameter(3)] ... [parameter(n)]
(CYLTRAN or CYLTRANP)

[parameter(2~~ [parameter(3)] ... [parameter]
(CYLTRANM)

Example: GEOMETRY 3 (CYLTRANM)
-0.5 0.20 0.0 10.5 3 1 1 5 0 0.03 0.4
0.2 12.45 0.0 10.5 1 0 0 0 1
-0.5 12.45 10.5 12.05 2

Default: no default; required for CYLTRAN
This keyword signals
the CYLTRAN codes.

the beginning
[parameter(l)]

32

of the geometry information for
is the number of input zones.

Immediately after the keyword line there must follow a series of
[parameter(l)] lines, one for each input zone, containing either
[parameters(2)] through [parameter(lI)] for CYLTRAN and CYLTRANP,
or [parameter(2)] through [parameter] for CYLTRANM. For
CYLTRAN and CYLTRANP, these parameters specify the minimum z
boundary, the maximum z boundary, the minimum P boundary, the
maximum p boundary, the material, the number of # subzones, the
number of p subzones, the number of z subzones, the input-
zone-dependent electron cutoff energy in MeV (see Sec. H.6 of
Appendix H for more detail) and the photon forced interaction
probability (see Sec. H.4 of Appendix H for more detail),

respectively. In the case of CYLTRANM, the macroscopic field flag
is inserted ahead of the cutoff energy. This flag specifies the
macroscopic fields that are present in the given zone and may have
the values: O for no field, 1 for magnetic field only, and 2 for
electric field (and also possibly magnetic field). All boundaries
are given in cm. These parameters are discussed in more detail in
Appendix D. When the trailing fields for the field flag, electron
cutoff and photon forced-interaction probability are left blank,
there will be no fields in the given zone, the electron cutoff
will be set to the global electron cutoff (normal -- see primary
keyword CUTOFFS), and there will be no forcing of photon
interactions (normal).

10c. ACCEPT codes (see Appendix E)
Syntax:

Example:

Default:

GEOMETRY [parameter(l)] [parameter(2)]
Combinatorial geometry description of problem bodies and
input zones as described in Appendix E
[parameter(3)]

[parameter(3~~
[parameter(6)]

parameter(4)] [parameter(5)]
(ACCEPT or ACCEPTP)

parameter(4)] [parameter(5)]

GEOMETRY O 1 (ACCEPTM, 4 input zones)
Combinatorial geometry description of
input zones as described in Appendix E
3 0 0.03 0.4
11
2
0
no default; required for ACCEPT codes

(ACCEPTM)

problem bodies and

This keyword signals the beginning of geometry input for the
ACCEPT codes. The value of [parameter(l)] determines the option
for setting the subzone volumes in cm3:

(a) O (normal and default) causes the volumes to be set
internally to 1.0.

(b) 1 causes the code to read the volumes from the input stream
as described in Appendix E.

(c) 2 requires that the user provide the necessary
computing the volumes at the appropriate
Subroutine JOGEN.

33

logic for
place in

Tracking debug is turned off or on according to whether
[parameter(2)] is set equal to O (default) or not, respectively.
What follows this keyword line is first the combinatorial geometry
description of the problem bodies and input zones as described in
Appendix E. Immediately after this information there must follow
a series of lines, one for each input zone, containing either

[parameters(3)] through [parameter(5)] for ACCEPT and ACCEPTP, or
[parameter(3)] through [parameter(6)] for ACCEPTM. For ACCEPT and
ACCEPTP, these parameters specify the material, the
input-zone-dependent electron cutoff energy in MeV (see Sec. H.6
of Appendix H for more detail) and the photon stretching factor
(see Sec. H.5 of Appendix H for more detail), respectively. In
the case of ACCEPTM, the macroscopic field flag is inserted ahead
of the cutoff energy. This flag specifies the macroscopic fields
that are present in the given input zone and may have the values:
O for no field, 1 for magnetic field only, and 2 for electric
field (and also possibly magnetic field). When the trailing
fields for the field flag, electron cutoff and photon stretching
factor are left blank, there will be no fields in the given zone,
the electron cutoff will be set to the global electron cutoff
(normal, see primary keyword CUTOFFS), and there will be no
stretching of photon interactions (normal).

11. HISTORIES
Syntax: HISTORIES [parameter(l)]
Example: HISTORIES 10000
Default: 1000 histories
Number of primary particle histories to be followed.

12. NEW-DATA-SET
Syntax: NEW-DATA-SET
Example: NEW-DATA-SET
Default: one run
This keyword signifies that the data set for a particular Monte
Carlo run has been read and that the data set for a new Monte
Carlo run follows. Its purpose is to permit multiple Monte Carlo
runs within a single code execution. Its usage represents the
sinzle exception to the rule that the ~rimarv kevwords are order
independent. The cross-section file generated according to Sec.
2.2 must contain the cross-section data necessary for running all
of the problems. The input data being described in the present
section must be repeated for each problem, and the input data sets
for the different problems must be separated from one another by a
line containing this keyword. Obviously, running multiple
problems will require more run time than running a single problem
and may lead to slower turnaround due to an assignment of lower
priority by the operating system.

Note: We have also discovered another completely unrelated, but
valuable, use for this keyword for the more sophisticated user.
If the user has modified the software in such a way that
additional data must be read after all other keywords for the run
have been read, this keyword can simply be inserted ahead of this

34

data to prevent its processing as standard keyword input.
However, to insure graceful termination, the modification

*DELETE,INPUT .920

should be included in the input to the UPEML correction run so
that the Monte Carlo code will not expect to read execution input
for a subsequent run.

13. NEXT-EVENT-ESCAPE
Syntax: NEXT-EVENT-ESCAPE
Example: NEXT-EVENT-ESCAPE
Default: Next-event estimator for photon escape is turned off

unless it has been automatically activated via the PHOTON-
ESCAPE keyword.

This keyword activates the next-event estimator as a method of
variance reduction for integral photon leakage when the PHOTON-
ESCAPE keyword is not used. It is automatically activated for
integral and differential photon leakage when the PHOTON-ESCAPE
keyword is used. The next-event method for photon leakage is
discussed further in Sec. H.7 of Appendix H.

14. NO-COHERENT
Syntax: NO-COHERENT
Example: NO-COHERENT
Default: Coherent photon scattering will be included in the

calculation.
This keyword deactivates the simulation of coherent photon
scattering.

15. NO-INCOH-BINDING
Syntax: NO-INCOH-BINDING
Example: NO-INCOH-BINDING
Default: Incoherent photon scattering will include binding effects.
This keyword causes incoherent photon scattering to be simulated
in the Klein-Nishina or free-electron approximation.

16. PHOTONS
Syntax: PHOTONS
Example: PHOTONS
Default: electron source
This keyword defines the source particles to be photons rather
than electrons.

PHOTRAN
Syntax: PHOTRAN
Example: PHOTRAN
Default: The simulation will make use of fully coupled

electron/photon transport.
This secondary keyword eliminates all electron transport,
simulating photon-only transport. For many applications
involving low-energy photon sources, the ranges of secondary
electrons and the production of radiation by those electrons
are negligible, so that photon transport alone is sufficient.

35

This ITS approximation has the advantage over some alternative
photon transport methods in that it otherwise rigorously
simulates the production and transport of line radiation.
This option can greatly reduce run time relative to that for
the fully coupled default software.

17. PHOTON-ESCAPE

same as ELECTRON-ESCAPE, except that line
radiation output is given separately from
the continuum, and uncollided radiation
(photon sources) is not included in the
default option

18. PHOTON-FLUX

same as ELECTRON-FLUX, except that line
radiation output is given separately from
the continuum, and uncollided radiation
(photon sources) is not included in the
default option

19. PLOTS

This keyword is only valid for the CYLTRAN and ACCEPT codes, assuming
that an appropriate graphics package is available on the machine on
which these codes are to be run. The plotting capability of ITS is
discussed in detail in Appendix 1. The choice between the following
two usages depends on which of the member codes of ITS has been
selected.

19a. CYLTRAN
Syntax: PLOTS [parameter(l)] [parameter(2)] ... [parameter(4)]
Example: PLOTS 0.0 5.2 -3.2 2.0
Default: no plots
This keyword is used to plot the problem geometry for any of the
CYLTRAN codes and, for CYLTRANM, the electron and positron
trajectories in zones where macroscopic fields are defined. Use

of this keyword will produce a p-z plot of that portion of the
problem cylinder bounded by [parameter(l)] through [parameter(4)]
which define the minimum p, the maximum p, the minimum z and the
maximum z, respectively, in cm. If the parameters are left blank,
the entire problem cylinder will be plotted. The following
secondary keyword defines which electron and positron trajectories
are to be plotted in the case of CYLTRANM.

ORBITS
Syntax: ORBITS [parameter(l)]
Example: ORBITS 10
Default: Electron and positron trajectories associated with the

5th, 10th 15th, ... source particle of the first batch
will be plotted.

36

Electron and positron trajectories associated with source
particles of the first batch that are multiples of
[parameter(l)] are to be plotted in those zones for which
macroscopic fields have been defined. A blank for
[parameter(l)] will cause all electron and positron
trajectories of the first batch to be plotted.

19b. ACCEPT codes
Syntax: PLOTS [parameter(l)]

[parameter(2)] [parameter(3)] ... [parameter(7)]

Example: PLOTS 3
-10.0 10.0 -10.0 10.0 ‘90.0 180.0
-10.0 10.0 -10.0 10.0 180.0 90.0
-10.0 10.0 -10.0 10.0 0.0 0.0

Default: no plots
Use of this keyword will produce [parameter(l)] parallel
projections of the body specification as given under the GEOMETRY
keyword. [parameter(2)] through [parameter(7)] are repeated
[parameter(l)] times on separate lines. [parameter(6)] and
[parameter(7)] specify the spherical polar angles # and 8,
respectively, in degrees that define the direction from which the
geometry is to be viewed. [parameter(2)] through [parameter(5)]
specify the minimum x, the maximum x, the minimum y, and the
maximum y, respectively, in cm of the plotted projection. If the
PLOTS keyword is used, all parameters are required; there are no
defaults. The following secondary keyword defines which electron
and positron trajectories are to be plotted in zones where
macroscopic fields are defined and is therefore valid only for the
ACCEPTM code. The trajectories will only be plotted on the final
projection.

ORBITS
Syntax: ORBITS [parameter(l)]
Example: ORBITS 10
Default: Electron and positron trajectories for the 5th, 10th

15th, etc., source particle of the first batch will be
plotted.

Electron and positron trajectories associated with source
particles of the first batch that are multiples of
[parameter(l)] are to be plotted in those zones for which
macroscopic fields have been defined. A blank for
[parameter(l)] will cause all electron and positron
trajectories of the first batch to be plotted.

20. POSITION

This keyword defines the reference position of the source. The
choice between the following two usages depends on which of the
member codes of ITS has been selected.

37

20a. TIGER codes
Syntax: POSITION [parameter(l)]
Example: POSITION 2.0
Default: source at z=O.O
[parameter(l)] is the z coordinate in cm.

20b. CYLTRAN and ACCEPT codes
Syntax: POSITION [parameter(l)] [parameter(2)] [parameter(3)]
Example: POSITION 0.0 0.0 2.0
Default: point source at x=O.0, y=O.O and z=minimum-z plane of

problem cylinder (CYLTRAN codes)
or

point source at origin (ACCEPT codes)
[parameter(l)] through [parameter(3)] are the x, y and z
coordinates , respectively, in cm. When this keyword is used
without parameters, the default reference position is used, but
now a finite radius source may be specified by the secondary
keyword, RADIUS, that is associated with this primary keyword.
IUiDIUS
Syntax: RADIUS [parameter(l)]
Example: RADIUS 3.5
Default: source radius equals 0.0
This keyword defines the radius in cm of a disk source with the
reference position at its center. The normal to the disk will
be the reference direction as defined by the DIRECTION keyword.
The meaning of source parameters specified by the POSITION and
DIRECTION keywords is illustrated in Fig. 1.

WARNING: The keywords DIRECTION, POSITION, and RADII,JSmust
be defined such that any sampled source position will fall
within some defined input zone (excluding the escape zone
for the ACCEPT codes).

21. PRINT-ALL
Syntax: PRINT-ALL
Example: PRINT-ALL
Default: Only the cumulative results for the final batch will be

written to the output file.
This keyword causes the cumulative results from all batches to be
written to the output file.

22. PULSE-HEIGHT
Syntax: PULSE-HEIGHT [parameter(l)] [parameter(2)]
Example: PULSE-HEIGHT 4 7
Default: No spectrum of absorbed energy will be calculated.
This keyword causes the spectrum of absorbed energy to be
calculated for input zones [parameter(l)] through [parameter(2)].
These parameters correspond to the order of the input zones as
those zones were input. If the parameters are left blank, the
spectrum of absorbed energy will be calculated for the entire

38

geometry. Certain biasing schemes, such as those activated by the
keyuords SCALE-BREMS and SCALE-IMPACT, are inconsistent with this
calculation; PULSE-HEIGHT will cause them to be deactivated (a
message so informing the user is written to the output file). The
following secondary keyword describes the energy bin structure
used in tallying the spectrum of absorbed energy.

i) NBINE
Syntax: NBINE [parameter(l)] [keyword]
Example for monoenergetic source energy of 2 MeV:

NBINE 6 USER
1.99999 1.0 0.5 0.25 0.00001 0.0

Default: ten bins of equal width plus total absorption and
total escape (i. e., 12 bins total)

If [keyword] is not specified then [parameter(l)] is the
number of desired equal-width bins plus 2 (to account for
both total absorption and escape). When [keyword] is USER,
[parameter (l)] is the number of bin energies to be read.
The only choice for [keyword] is:

a) USER -- User defined energy grid: code will then read
the lower bounds of the energy bins (MeV) in
descending order as in the above example. The
maximum lower bound must be less than the maximum
source energy. In the above example, the first lower
bound and the last two lower bounds were chosen to
insure that total absorption (full source particle
energy absorbed in the selected region) and total
escape (no energy absorbed in selected region for
given source particle), respectively, would be
accounted for.

Note that the primary keyword alone, with no other parameters or
keywords, will result in the calculation of the spectrum of
absorbed energy for the entire geometry using the default bin
structure.

23. RANDOM-NUMBER
Syntax: RANDOM-NUMBER

[parameter(l)]
Example: RANDOM-NUMBER

4265641542
Default: O
[parameter(l)] is the initial random number seed for the Monte
Carlo run. This keyword can be used to start a run with the final
random number from an earlier run for which a dump file does not
exist. It can also be used in debugging to isolate the offending
primary history. For a similar purpose, the more sophisticated
user can use this keyword in conjunction with a print of the
initial random number seed of a source particle, IRSAV . The
format for [parameter(l)] will depend on the random number
routines that are being used. See Sec. 4.2 for further discussion
of issues concerning random number routines.

39

24. RESTART
Syntax: RESTART [parameter(l)]
Example: RESTART 4
Default: no restart
This keyword is used to signal-that a problem is to be restarted
from the output of the batch indicated by [parameter(l)]. A dump
must have been written and saved (see keyword DUMP) on a previous
run. The dump file must be assigned to Fortran unit 14 for the
restart run. Furthermore, the batch size (number of histories
divided by the number of batches) on the restart run must be the
same size as those for which the dump file was written in order to
permit the accurate computation of statistical uncertainties.

25. SCALE-BREMS
Syntax: SCALE-BREMS [parameter(l)] [parameter(2)]
Example: SCALE-BREMS 100.0 3
Default: natural probability of bremsstrahlung production
This keyword is used to scale bremsstrahlung production.
[parameter(l)] is used to scale bremsstrahlung production so as to
increase the photon population without increasing the number of
primary histories. A more detailed discussion of this option can
be found in Appendix H. [parameter(2)] is the index of the
material, according to the order in which the materials are read,
on which the scaling is to be based -- material number 3 in the
example. The default is material number 1. The following
secondary keyword associated with this primary keyword is used to
control the number of secondary electrons generated by this
increased population of photons.

i) ELECTRON-RR
Syntax: ELECTRON-RR [parameter(l)]
Example: ELECTRON-RR 0.1
Default: (normal) The natural number of photon produced

secondary electrons will be followed.
[parameter(l)] is the Russian Roulette survival probability
used in determining the number of photon produced secondary
electrons to be followed; if omitted or 0.0, the natural
number of electrons will be followed (the number produced
if SCALE-BREMS had not been used).

26. SCALE-IMPACT
Syntax: SCALE-IMPACT [parameter(l)]
Example: SCALE-IMPACT 20.0
Default: natural probability of electron impact ionization, except

that if the SCALE-BREMS keyword has been used, the scale
factor for electron impact ionization will be set to 20%
of [parameter(l)] of that keyword (normal).

This keyword is used to scale electron impact ionization.
[parameter(l)] is used to scale electron impact ionization so as

40

to increase the photon population (line radiation) without
increasing the number of primary histories. A more detailed
discussion of this option can be found in Appendix H.

27. SPECTRUM
Syntax: SPECTRUM [parameter(l)]
Example: SPECTRUM 6

1.0 0.8 0.45 0.2 0.05 0.0
0.9 0.7 0.5 0.3 0.1 0.0

Default: monoenergetic source
This keyword signals that the energies of the source particles are
to be sampled from a spectrum. As shown in the above example, the
next line(s) of input must contain [parameter(l)] values of the
normalized cumulative distribution of source particles in
descending order from 1.0 to 0.0, and the next line(s) must
contain the corresponding energies (MeV) in descending order. In
the above example the source energies will be sampled from the
spectrum shown in Fig. 2. Note that the spectrum may now extend
below the apProPriate cutoff ener~v as defined by the. keyword
CUTOFFS. If the sampled energy of a source particle is below the
cutoff , the particle is rejected, and an accounting of the number
and energy

10

9

g

u
z
u
\

8

7

6

5

4

3

2

1

0

of rejected source particles is given in the output,

I I I I I I I I [

5“/. 15% 250/o 35%

I I I 120”/0
o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

ENERGY(MeV)

Figure 2: Differential Source Spectrum from Which the Cumulative
Distribution in the Example Given under the SPECTRUM Keyword
Was Obtained

41

28. TITLE
Syntax: TITLE

[parameter(l)]
Example: TITLE

1.0 MEV BREMSSTRAHLUNG PRODUCTION IN TA
Default: no title
This keyword signals that the next line of input contains
[parameter(l)], which is a title of up to 80 columns that will be
written to the output file and will also be used as the title on
any plots that are generated.

29. TRAP-ELECTRONS
Syntax: TRAP-ELECTRONS [parameter(l)]
Example: TRAP-ELECTRONS 0.2
Default: The electron trapping energy for each zone will be set

equal to the zone dependent cutoff energy.
In certain problems where only electrons that cross certain
boundaries are important, this keyword may be employed to
significantly reduce running time. [parameter(l)] is the global
trapping energy in MeV. The zone-dependent trapping energy for
each zone will be set equal to the greater of this value or the
zone-dependent cutoff energy. However, if electron flux output
has been requested for a given zone (see keyword ELECTRON-FLUX),
the trapping energy for that zone will, if necessary, be reduced
to the cutoff energy for that zone.

If an electron in a given zone has an energy less than the
trapping energy for that zone, even though the electron energy may
be greater than the cutoff energy for that zone (see keyword
GEOMETRY), and if that electron cannot escape from the zone or, in
some cases, subzone (see below), its history will be terminated
via on-the-spot deposition of its charge and energy. No further
secondary production (e.g., bremsstrahlung production) will occur.
This electron-trapping option is based on subzone boundaries in
the TIGER codes, axial and radial subzone boundaries in the
CYLTRAN codes, and zone boundaries in the ACCEPT codes. More
detail on this option can be found in Sec. H.1 of Appendix H.

2.4 Suzzestions for Efficient Operation

The general operational limitations on the member codes of ITS are
defined by the scope of the keyword input. However, specific
information on the array sizes is provided by the Monte Carlo programs
themselves . If while processing the keyword input, an array dimension
required by a particular problem exceeds the default allocations as
defined by Fortran 77 PARAMETER statements, the execution aborts
immediately with a message to that effect being written to the output
file. The user has the choice of either reducing the requirements or
increasing the allocation. The latter is easily accomplished by using
the update processor, UPEML, as described in Sec. 3.3 to modify the
PARAMETER statements. The definitions of these integer parameters and
the corresponding PARAMETER statements are located at the very beginning

42

of the Monte Carlo program file (see also Sec. 4.4) . We do not wish to
exaggerate the necessity of this procedure since, in most cases, we have
made conservatively large choices for the default values.

Immediately after a particular Monte Carlo member code has
successfully processed the keyword input, it prints out a virtually
complete comparison of the required array dimensions with the
allocations as defined by the PARAMETER statements. If desired, a user
may then customize the code to the problem by reducing all allocations
to actual requirements. These modifications are optional, but mav be
reauired when running comulex problems with the more complex codes on
machines with limited fast memory. Moreover, the modifications ~
simificantly reduce computing costs where the charging algorithm
depends on memory usage. Indeed, PARAMETER changes will affect CPU
times as well on some computing systems.

CAUTION: Care must be taken in reducing an allocation to zero since
this may result in the upper bounds of the dimensions of certain
arrays being set to zero; this will result in a fatal error since
the lower bounds of the dimensions of all arrays is one.

Perhaps more important is the fact that the choice of certain input
parameters can markedly affect the efficiency of the calculation; that
is, the user’s ability to obtain statistically meaningful output in a
reasonable amount of time:

a. Obviously, the number of histories should be kept as small as
possible. All member codes provide the user with estimates of
the statistical uncertainties of the output data (see Sec. 2.5).
Assuming that these uncertainties vary like the square root of
the number of histories, these estimates then serve as a guide
to the ultimate choice of the number of histories. The user
must decide what level of statistical accuracy is acceptable for
his or her particular application.

b. Electron cutoffs should be as large as possible. For example,
if the source is monoenergetic, a global electron cutoff equal
to 5 or 10 percent of the source energy should be adequate.
Because the logarithmic energy grid used in the electron
transport technique becomes much finer at low energies,
following electron histories down to low energies becomes very
time consuming. On the other hand, running time is not very
sensitive to the value of the photon cutoff energy because low
energy photons have a high probability of being absorbed after
only a few interactions.

c. Similarly, electron trapping energies should be as large as
possible. For example, consider the simulation of photoemission
by low-energy photon sources. Because accurate simulation of
boundary crossings is important, electron cutoffs must be low.
On the other hand, if bremsstrahlung production is not
important, as is likely in this case, electron trapping energies

may be as high as the maximum source energy.

43

d. The requested energy, angle, and spatial resolutions should be
no higher than necessary. Demanding excessive resolution only
makes it more difficult -- i. e., costly -- to obtain
statistically meaningful output.

Finally, the judicious use of a number of other variance reduction
and biasing options can markedly increase the efficiency of certain
calculations. Specific examples of these are discussed under keywords
SCALE-BREMS and SCALE-IMPACT. The stretching or contraction of photon
mean free paths, or forcing of photon interactions is discussed under
keyword GEOMETRY. Some of these are discussed in even more detail in
Appendix H. Users are warned, however, that the reckless and
indiscriminate use of biasing procedures can lead to misleading results.

2.5 oUtDUt

In addition to certain diagnostic information, the default output
consists of:

a. Energy and number escape fractions (leakage) for electrons,
unscattered primary photons, and scattered photons

b. Charge and energy deposition profiles
c. An explicit statement of energy conservation
d. For the TIGER codes, the number and energy electron boundary

currents for each layer

These data are sufficient to confirm the general partitioning and
conservation of charge and energy. In very unusual situations where
very high cutoff energies are specified, a decrement of charge and
energy may be unaccounted for because particles escaping with energies
below the cutoffs are not tallied.

In addition to the default output, a number of optional outputs may
be selected through the use of the appropriate ke~ords. These are:

a. Escape fractions that are differential in energy for electrons,
scattered continuum photons, and line radiation

b. Escape fractions that are differential in angle for electrons,
scattered continuum photons, and line radiation

c. Coupled energy and angular distributions of escaping electrons,
scattered continuum photons, and line radiation

d. Volume averaged fluxes that are differential in energy for
electrons, scattered continuum photons, and line radiation for
selected regions of the problem geometry

e. Volume averaged fluxes that are differential in angle for
electrons , scattered continuum photons, and line radiation for
selected regions of the problem geometry

f. Coupled energy and angular distributions of volume averaged
fluxes of electrons, scattered continuum photons, and line
radiation for selected regions of the problem geometry

g. A pseudo-pulse-height distribution for a selected region of the
problem geometry -- for example, the region corresponding to
active detector elements.

44

By scattered continuum we mean that these photon flux and escape outputs
do not include unscattered primary photons. The latter can often be
calculated analytically, and, if not excluded from these outputs, will
often dominate the distributions, masking the contribution from the
scattered photons for which the Monte Carlo simulation is required.

For the standard codes, line radiation ouput can be obtained for
either one (Z < 13) or three (Z > 13) K-fluorescent lines of the
highest-atomic-number element in each material. For the P codes, all
lines for each element in the problem can be obtained. These lines can
only be obtained provided that their energies are greater than 1.0 keV
and greater than the photon cutoff energy. In every case the lines are
identified by the atomic shell transition and the fluorescent energy.

The more sophisticated user will be able to modify existing outputs
and add additional ones through the correction run procedures described
in Sec. 3.3.

Except for an initial diagnostic table containing accounting
information on the various particle types, every output quantity is
followed by a one- or two-digit integer that is an estimate of the one-
sigma statistical uncertainty of that quantity expressed in percent.
Details of the method used to obtain these statistical data are given in
Appendix J.

2.6 Availability

The European community should request the ITS software package
from:

OECD NEA Data Bank
91191 Gif-sur-Yvette
CEDEX
FIUNCE

T616phone
T&14.copieur
Earn/Bitnet:

69 08 49 12
69 41 39 65
DBMAIL@FRNEAB51

All others can obtain it from:

Radiation Shielding Information Center
Oak Ridge National Laboratory
P. O. BOX 2008
Oak Ridge, Tennessee 37831-6362
USA

Commercial Phone No, 615-574-6176
FTS Phone No. 624-6176
FAX 615-574-9619
BitNet: PDC@ORNLSTC
Internet: PDC@EPIC.EPM. ORNL.GOV

45

3. Machine Portable Update Processor - UPEML

The ITS system contains several cross-section and Monte Carlo
transport codes combined within the two program libraries, XGEN and ITS.
The desired code is extracted from one of these combined libraries for
execution. A CDC UPDATE processor24 or its equivalent, Version 3.0 of
UPEML,25 is used to perform this extraction as well as to modify the
code. UPEML is the machine-portable UPDATE emulator included in this
package, and Version 3.0 has additional capabilities and error checking
relative to the initial version. The structure of the program libraries
as well as the process of extraction and modification of the Fortran
coding are explained below.

Before proceeding, however, a word about the names of the
input/output 1/0 files used by the UPEML processor is in order. Table I
of Ref. 25 gives the default file names associated with various command
line parameters (e.g., file “srcdk” for parameter I), and we have used
these default file names throughout this document. Alternatively, the
user may override a default file name on the command line itself by
equating the parameter to some other file name. For example, instead of
just using I on the command line, he or she could use I=mychoice. File
“mychoice” would then replace the default file, “srcdk”.

3.1 Structure of the ProEram Libraries

The ITS and XGEN program libraries exist in two forms:
1) card images - the SOURCE library, and
2) an UPDATE-processed binary file - the OLDPL (Old Program

Library).

3.1.1 The SOURCE Librarv --- The SOURCE library (e.g., the XGEN
file or the ITS file as obtained from the magnetic tape of the ITS
system package) differs from a normal Fortran program that can be passed
directly to the compiler in that it contains additional directives,
recognized by the UPDATE processor, that make possible the integration
of multiple machine versions of multiple codes. These directives
consists of: *DECK, [deckname] and *COMDECK, [comdeckname] deck name

identifiers; *CALL, [comdeckname] instructions to copy common decks into
a specified location; and *IF DEF, [keyword], *IF -DEF, [keyword], and
*ENDIF conditional identifiers. The directives are interspersed with
standard Fortran card images to create the desired library structure. A
brief example of a SOURCE library follows. The numbers to the left
correspond to the explanations below.

(2) *COMDECK,COM1

COMMON /BLOCK1/ X(1OO), Y(1OO)
(1) *DECK,~IN

PROGRAM SAMPLE1

46

(1)

(2)

(3)

(2) *CALL,COM1

DIMENSION Z(1OO)
X(l)=o.o
DO 100 I = 1, 100

(3) *IF DEF,OpTl

Y(I) = X(I)+FUNC1(I)
(3) *ENDIF

(3) *IF DEF,0pT2

Y(I) = X(I)+COS(X(I))
(3) *ENDIF

X(I) = X(I)+O.025
100 CONTINUE

END
(1) *DECK,FUNC1

FUNCTION FUNC1(J)
(2) *CALL,COM1

FUNC1 = 1.0+(TAN(X(J))**2
RETURN
END

Notice that both the main program and the associated function have
*DECK identifiers to give them unique names. This is a feature of
the ITS package; each program, subroutine, and function has a
unique deck name*.

The *COMDECK names a common deck. A common deck can be inserted
anywhere into the program file when requested by an associated
*CALL statement. Here , the common block named BLOCK1, and
identified as common deck COM1, will be inserted into the main
program at the location of the *CALL,COM1 statement.

The means of combining multiple codes and multiple machine versions
into a single lib~ary i-s demonstrated by the use of the
*IF DEF, [keyword]/*ENDIF structure in this example. If OPT1 is
chosen via a *DEFINE,OPT1 statement in the input deck of the
correction run (see Sec. 3.3) , the lines of intervening code
between the *IF DEF,OPT1 and the *ENDIF are included into the
compile file . Similarly, if *DEFINE,0PT2 is specified, the
alternate coding is included. A statement of *IF -DEF,OPT1 would
cause the intervening code to be included only if OPT1 is not
defined. More complex logic structures are created by nesting
*IF DEF, and *IF -DEF statements to achieve the equivalents of
“and” and “and not” constructs.

* The advantage of this is that resequencing after code modification
will only change the line identifiers of decks that are actually
modified. This will minimize the changes necessary in the update
streams used in correction runs as described in Sec. 3.3.

47

3.1.2 The Binary Old ProEram Library (OLDPL) --- The installation
process described in Appendix A takes the ITS and XGEN SOURCE files and
creates an equivalent binary image called the old program library
(OLDPL). The initial UPEML execution of the installation process is
called a “creation run” since the OLDPL that will be used in all future
program executions is created. Other than the binary form of the OLDPL,
the primary difference between the OLDPL and the SOURCE library is that
each line in the OLDPL is uniquely labeled with a deck name and an
associated deck sequence number. For example, the program card in the
example is the first card after the *DECK,MAIN statement and is
identified as MAIN 00002. Similarly, the next card, the DIMENSION
statement, is identified as MAIN 00003. Note that the *DECK,MAIN card
has itself been identified as MAIN 00001. Each line in a deck or common
deck is identified in this way. The coding can then be modified as
described in Section 3.3 by inserting and deleting cards at positions
identified by the appropriate deck or common deck names and sequence
numbers. The *IF DEF file structure information is retained in this
binary format and is applied by using the appropriate set of
*DEFINE, [keyword] statements in the input deck to the correction run as

described in Sec. 3.3.

3.2 The Creation Run

The installation of the ITS and XGEN files involves the one-time
creation of binary OLDPLS for each of these files. Once these libraries
are created, they should be permanently stored on disk. We do not
recommend editing the SOURCE libraries and then remaking the OLDPLS!
The use of the UPEML preprocessor, in addition to allowing us to combine
the eight codes in the TIGER series into a single package, permits the
standardization of a particular release (Version number). That is,
regardless of the host machine and user location, if ITS is installed as
described, every copy of a particular version of the program library
will have identical deck names, common deck names, and sequence numbers.
This standardization will simplify the distribution of future
modifications by the authors, both for correcting errors and for
expanding program capabilities. Furthermore, if errors are detected by
users, they can report the exact location of these errors to the
authors, thus facilitating maintenance of the ITS system.

3,3 Correction Runs

Once the OLDPL has been created, the actual Fortran card images to
pass to the compiler are obtained in what is termed a “correction run”.
At a minimum, this correction run requires input to define the machine
and code keywords that describe the desired program. This information
is contained on a series of *DEFINE, [keyword] cards, and examples of
such input can be found in Appendix B. In addition to configuring the
program through these definitions, the program can simultaneously be
modified using appropriate combinations of the following update
directives:

*IDENT, [name]
*INSERT, [identifier]

. . .

48

*DELETE, [identifier]

...
*BEFORE, [identifier]

...
The [identifier] is the appropriate deck (or common deck) name and
sequence number for a card image contained in the OLDPL. The syntax for
combining these two fields is such that a card that is internally
identified as MAIN 00002 is identified in the input deck as “MAIN.2”.
The *INSERT directive is used to insert the Fortran card images that
follow the directive into the program after the card image identified in
the directive. The *BEFORE directive performs a similar function,
except that the card images that follow the directive are inserted
before the card image identified in the directive. The *DELETE
directive deletes the card image identified in the directive and inserts
the Fortran card images following the directive (if any) in its place.
A range of program library card images can be deleted via the directive,
*DELETE,MAINC 2,MAIN. 5, which says to delete card images two through five

inclusive from deck MAIN and replace them by the Fortran card images
that follow the directive (if any). A directive consisting of */
followed by at least one space can be used to insert comments into the
input stream for the UPDATE processor; these comments will be ignored by
the processor. As discussed in Appendix A, a listing of all the card
images included in the OLDPL along with their deck name (or common deck
name) and sequence number identifiers is requested by using the “L”
parameter on the command line of the creation run.

The input command line required for performing a correction run
with UPEML is:

F,P

The “F” parameter denotes that a Fortran compile file is to be written
to the file “cmpfil” . The “P” parameter denotes that this is a
correction run and that a previously created OLDPL is available as the
file “oldpl” . The addition of an “L” qualifier (comma-delimited)
generates a summary of all operations performed (e.g., INSERTS, DELETEs,
DEFINE options, etc.) on the file “listfl”.

The essential function of the correction run is the selection of a
particular member code and a particular machine. When one of the M
codes has been selected, the user will also find it necessary to include
within the correction run the required logic for evaluating the magnetic
and/or electric fields at a given position, as discussed in Sec. 2.3.1,
by replacing or modifying the logic of Subroutine BFLD. An example of a
CYLTRANM correction set can be found in Sec. B.7 of Appendix B.

The UPEML correction run provides the more sophisticated user with
a much more powerful tool than is required for the simple functions that
have been discussed so far. The analog nature of the Monte Carlo
procedure, the completeness with which the ITS system describes the
radiation transport, and the flexibility of construction of the ITS
system make it possible for the user to significantly extend the
capabilities of the system through the proper use of the correction run.

49

As the user becomes more familiar with the system, he will very likely
begin using the correction run to customize individual member codes and
the system itself to his own particular applications and his own
particular style of operation.

50

4. Monte Carlo Program File - ITS

The heart of ITS is the Monte Carlo program file. Indeed, the
system takes its name from the name of this file. Within this file we
have integrated the Fortran coding of eight Monte Carlo codes. Each of
these codes provides a detailed description of the production and
transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV.

4.1 Eight Codes

Using the procedure described in Sec. 3.1, Version 1.0 of ITS was
obtained by integrating the eight Monte Carlo codes in Table II into a
single card-image program library (SOURCE file). The resulting system
is far more manageable for ourselves and for users alike than the older
system involving separate program libraries for the individual codes.
There is much common coding among the various member codes. Many
geometry-independent routines such as scattering routines and utilities
are identical in all of the codes. Even though the material geometry of
the CYLTRAN codes is two dimensional, the tracking logic is fully three
dimensional so that much of this logic is common to both the CYLTRAN and
ACCEPT codes. The advantage of this common coding is that any
programming modification, permanent or temporary, need only be done once
instead of tediously repeating the modification for each individual
code . Indeed, we have benefited from this advantage during the
development of the ITS system when we added a common restart option and
added the logic for photon transport down to 1.0 keV. These are just
two of many examples.

The integration process also brought to the user a much more
powerful system than was available with the older codes. CYLTRANP and
the M codes represented new public releases of codes that had been
developed for some time. Their expeditious release had been prevented
by the burdensome task of preparing and maintaining multiple code
packages. Even the maintenance of the unreleased versions for our own
use had become quite difficult. Moreover, the ACCEPTP code was a new
code that was simply a product of the integration process. We had
wanted to develop this code for some time, but the effort required to do
so as a separate entity was not justified in light of other priorities.
On a smaller scale, but perhaps just as important, options in one code
that should have been, but for one reason or another were not, added to
the other codes simply became common coding as a result of the
integration process.

4.2 Four Machines

To the maximum possible extent, the codes were rewritten in ANSI
Standard Fortran 77. This does not mean, however, that the same Fortran
version of a code is transportable -- i. e. , that it will compile and
load/link on more than one machine, or even on more than one operating
system on a given machine. Software vendors can be counted on to
implement nonstandard Fortran and to not implement standard Fortran in

51

their compilers. There are machine-dependent constants such as unit
roundoff. The single precision word size of some machines may not
provide sufficient accuracy. Necessary intrinsic routines may not be
precisely the same, either in name or in function. Library functions
and other utilities may not be generally available. Much effort was
necessary to develop and test a system having full capability on CRAY,
CDC, IBM, and VAX machines. Although this was done for Version 1.0, we
ourselves have not been able to test subsequent versions on either CDC
or IBM machines. Except for extensive testing of the IBM versions of
all the codes by the Radiation Shielding Information Center, ORNL, we
must now rely on user testing for these two vendors. Indeed, the ITS
user community has now installed the full system on the machines of a
great variety vendors, from main frames to work stations, and has run
them under a number of operating systems. More recently, a more
limited, but expanding, capability is being achieved on PCs.

The most serious obstacle to providing a multimachine capability in
ITS had to do with word size. The original individual codes of the
TIGER series were developed primarily on CDC machines having 60-bit
words . Consequently, we encountered little difficulty in running the
ITS member codes on a CRAY machine with its 64-bit word. Running on the
VAX* , however, with its 32-bit word was not so simple. The difficulty
stems primarily from the use of absolute tolerances in many of the
member codes. Although we were able to run test problems by modifying
certain tolerances, the modifications were problem dependent.
Consequently, we made the decision not to support ITS application at
less than a 60-bit word size.

Nevertheless , in order to make ITS available to users of machines
with smaller word sizes, the SOURCE file is constructed such that double
precision versions of the member codes can be obtained. Double
precision versions are obtained whenever either of the update
directives, *DEFINE,VAX or *DEFINE,IBM, are used in a correction run for

either the XGEN or the ITS file (when the machine and code are selected)
as discussed in Sec. 2.3.1. These versions were implemented by double
previsioning all real constants and variables. To facilitate double
previsioning of literal real constants, these constants were replaced
throughout the file by real parameters beginning with the letter C.
These real parameters are defined near the top of the file immediately
after the specification of the integer parameters.

* Many institutions that heretofore found the cost of purchasing time
on large scientific computers in order to run Monte Carlo radiation
transport codes to be prohibitive are now finding it economical to
do so on their own super-minicomputers and workstations. Even
though these machines are slower than supercomputers, they often
sit idle on nights and weekends.

52

We were frustrated in our initial attempts at constructing a double
precision version of the ACCEPT code. In the original combinatorial
logic of that code,8>9 mixed real and integer data are close packed in a
single one-dimensional real array. This was tantamount to equivalencing
reals with integers and was not compatible with our scheme for obtaining
double precision. It was necessary to rewrite a substantial portion of
the combinatorial geometry logic in order to eliminate this
equivalencing. An unexpected benefit of this effort was simpler and
more readable logic, and a reduction in run time of more than 10%.

The double precision versions of the ITS member codes have been
successfully tested on VAX and IBM machines.

Many of the other machine and operating system dependencies were
easily taken care of in the SOURCE file through the *IF DEF, [keyword] -
*ENDIF construct described in Sec. 3.1. Machine constants, special
features or deficiencies in Fortran compilers, and problems with
intrinsic routines can usually be handled in this way. Random number
generators and timing routines are the most obvious examples of routines
that vary from installation to installation. See Appendix N for a
discussion of some of the problems presented by random number
generators.

Math library routines and the plot utility presented special
problems. In the case of the library routines, our solution was to
include Fortran versions of the necessary routines as part of the SOURCE
file . These math library routines were needed in the M codes. They
were taken from the FXMATH library at Sandia National Laboratories and
rewritten in Fortran 77. Double precision versions were included, and
embellishments similar to those in other routines of the SOURCE file
were added.

Installation dependencies were important considerations in our
decision not to provide a plot capability for certain member codes of
ITS . We have simply defined the appropriate external routines from
which a user may call whatever local plot utility he wishes. There are
several good commercial plot utilities. These plot utilities are not
generally available, however, and they are usually more sophisticated
than we require. As discussed in Appendix I, we need only the
capability for linear X-Y plots. Consequent

z’
our own choice has been

to use a very simple utility called WEASEL.2 WEASEL was developed at
Sandia National Laboratories and requires very little memory; it is
therefore especially suitable for running on machines with limited fast
memory.

4.3 Free-Format Input

The new free-format input scheme is likely to have more practical
impact on users of the older versions of the ITS member codes than any
other modification. This scheme has many advantages over the older
formatted scheme:

53

(1)

(2)

(3)

(4)

(5)

(6)

The most obvious advantage is the elimination of the need for
tedious column counting or careful positioning when entering
input data.

The free formatting of data is coupled to a small set of
descriptive keywords. This makes the input data file much more
eye readable; the user can see at a glance the meaning of a
particular group of numerical values.

The primary keywords are order independent so that, for

example, the user does not have to remember whether the angular
description of the source must be input before its energy
distribution, whether electron flux options must be selected
before photon flux options, etc.

An attempt has been made to implement defaults to the maximum
possible extent. For example, the user doesn’t have to specify
1000 primary histories, or 10 batches or an electron source
since these are all defaults. In fact, a vacuous input file
will not cause an abort until tracking begins because the
geometry specification is the only input that does not have a
default. The point is that users only ask for what they want.
This eliminates the tedious chore of carefully going through a
long list of input instructions and turning off lots of
switches and inserting default or dummy input data for options
that are of no interest.

The use of keywords with their appropriate defaults has made
possible in the ITS member codes the selection through input of
options and features that could only be obtained via update
(code modification) in the original unintegrated codes.
Consequently, the new input scheme gives us the best of both
worlds by simultaneously minimizing both input and update.

The logic for the input scheme includes extensive internal
checking for inconsistencies and other errors in the input
data. Every effort is made to trap errors at the earliest
possible time during execution by terminating the run with an
informative diagnostic in order to avoid the necessity of time
consuming and expensive debugging and traceback.

4.4 Parameterizatiq

One of the more useful features of Fortran 77 that has been
implemented to the maximum possible extent is parameterization -- the
feature that permits the setting of values of certain real and integer
constants at compilation time. In particular, parameterization has
simplified the redimensioning of arrays in order to minimize memory
usage and has facilitated the double precision modifications.

Virtually every array of every common block and every dimension
statement of the ITS file has been parameterized. On machines with fast
memory limitations such as the CDC 7600 or the CYBER 76,

54

parameterization provides a simple and convenient means of customizing
the memory requirements of a member code to a particular application.
Furthermore, the code provides information to assist in this task. The
routine output of each code includes a table comparing memory allocation
with memory requirements for the particular problem being run. With
this information as a guide, the update processor, UPEML, can be used to
reduce parameters that are larger than necessary. For example, the user
may redimension the code for the actual number of materials or zones
required for a given problem by changing a single parameter. In the
older versions of the codes, it was necessary to carefully search out
and change each individual array that depended on those dimensions. To
facilitate the modification of these integer parameters, they are
defined and their values set at the beginning of the ITS file. Finally,
even on machines with no fast memory limitation, the use of
parameterization permits more efficient allocation of memory resources
and can also lead to a reduction in CPU time. See, however, the caution
in Sec. 2.4.

AS discussed in Sec. 4.2, parameterization was also helpful in
providing double precision versions of the codes for users of machines
with single precision word sizes of less than 60 bits. Our objective
was to use double precision for all real numbers. This was easy enough
to do for real variables with the DOUBLE PRECISION (A-H, O-Z) statement.
However, the literal constants remained. Parameterization provided the
solution. Virtually every literal constant has been replaced by a
parameter, usually with a descriptive name, beginning with the letter C
such as CONE for 1.0. These constants were then automatically included
in the DOUBLE PRECISION statement. The real parameters are also set
near the top of the ITS file just after the integer parameters.

4.5 Embellishments

Users of the versions of the ITS member codes before integration
may find it surprising that this integrated program file is not more
compact. The reason for this is that while much duplication was
eliminated through integration, much was added in the way of
embellishments.

The coding is now much more readable. The more complicated GO TO
logic of the older versions has been replaced by the BLOCK-IF structure
of Fortran 77. A hierarchy of indentation is used for nested BLOCK-IF’s
and DO-LOOP’S. In the interest of a top-down linear flow of the logic,
we have frequently seen fit to duplicate coding. By comparison with the
codes before integration, ITS is extensively commented. All subroutine
calls are highlighted. For the most part, format statements were
collected at the top of each subroutine in Version 1.0 of ITS. In
Version 3.0, however, we have gone much more to in-line formats where
those formats contain descriptive information, because such formats
provide the same kind of information as comments. Each subroutine

begins with a banner that defines its function, shows its linkage to
other program modules, and gives its dates of origination and last
modification. Finally, attention has been given to many other aesthetic
details of the coding, the cumulative effect of which is to facilitate
an understanding of the logical structure.

55

4.6 Additional Restructuring Subsequent to Version 1.0

Of special note are some of the restructuring that occurred after
Version 1.0. Much additional error checking was added. Subroutines
INPUT and OUTPUT were each broken up into a number of smaller functional
modules . The basic analytic-geometry routine of the combinatorial
geometry of the three-dimensional ACCEPT codes (Subroutine GG) was
completely rewritten with extensive comments. With this new software,
we have consistently obtained run-time reductions of 10-15% for a
variety of applications. Similarly, the module that provides enhanced
simulation of atomic shell ionization and relaxation in the P codes
(Subroutine PEAUF) was broken down and rewritten in modern Fortran 77,
with much additional commenting, into a driver routine and a series of
subroutines for each atomic shell. All integer toggles were replaced by
logicals, and integer codes (e.g., primitive body types in the ACCEPT
codes) were replaced by descriptive character strings.

56

5. Cross-Section Generating File - XGEN

XGEN combines the functions of the photon cross-section generating
programs and the electron cross-section generating programs of the older
unintegrated versions of the codes of the TIGER series into a single
cross-section generating program. It is a card-image program library
(SOURCE file) that uses the methods described in Sec. 3.1 to integrate
the cross-section generating program for the standard codes with the
cross-section generating program for the P codes for four machines. The
integration process was performed in a fashion analogous to that
employed to construct the card image program library for the Monte Carlo
program file, ITS, as discussed in Sees. 4.1 and 4.2.

In the case of Version 1.0 of XGEN, this integration process was
accomplished with a minimum of embellishments and little more than the
Fortran changes that were absolutely necessary for Fortran 77
compilation. There are two notable exceptions to the latter. The
formatted input used in all pre-ITS versions of the member codes has
been replaced by a free-format scheme having the many advantages
discussed in Sec. 4.3*. We also parameterized the number of materials
for which cross-section data are to be generated in order to facilitate
calculation for a larger number than the default value of five.

In Version 3.0, on the other hand, we have restructured XGEN much
more extensively along the lines of the Monte Carlo program file as
discussed in Sec. 4. This restructuring is still not as complete as we
would like, but is a major improvement over Version 1.0. We carried out
a line by line rewrite, converting the Fortran to the BLOCK-IF structure
of the Fortran 77 standard, and a hierarchy of indentation has been used
for nested BLOCK-IFS and DO-LOOPS. Changes to the names of common
variables across modules were eliminated, so that only a single literal
copy of each common block, or COMDECK in the parlance of the UPEML
processor (see Sec. 3.1.1), appears in the XGEN file. Many more arrays
have been parameterized, and error checking is much more extensive. Of
special note is the parameterization of the length of the electron
cross-section energy grid written to the Monte Carlo cross-section input
file . As discussed under the CUTOFFS keyword of Sec. 2.3.2, this
greatly facilitates the generation and use of electron cross sections
that span an arbitrary energy range between 1.0 GeV and 1.0 keV. We
have also parameterized literal real constants in a fashion similar to
that described in Sec. 4.4 for the ITS file in order to facilitate the

use of double precision when either of the directives, *DEFINE,VAX or
*DEFINE,IBM, are used in an UpEML correction run.

* The maximum use of defaults in the cross-section input is em-
phasized by the fact that if no data is input, cross sections for
1.0 MeV in aluminum will be generated.

57

In addition to the input data discussed in Sec. 2.2, the executing
codes read input data from the single data file, XDATA, described in
Sec. 6. This combining of both the cross-section generating programs
for electrons and photons and the corresponding data files greatly
simplifies both the Job Control Language and the logic for manipulating
the files within the programs.

There have been substantial improvements and changes to the
particle cross sections between Versions 1.0 and 3.0. These are
discussed in more detail in Appendix M, but will be mentioned briefly
here. In Version 1.0, the photon cross sections were derived primarily
from the compilations of Biggs and Lighthill,27~28 along with the
tabulated pair production cross sections of Hubbell et al.29 above 100.0
MeV. In Version 3.0, we have instead implemented the latest data base
from the National Institute of Standards and Technology (see Sec. M.4 of
Appendix M). The advantage of the latter cross sections is that they
allow us to include, for the first time, coherent scattering in the
simulation of photon transport and binding effects for both coherent and
incoherent scattering (see Sees. M.5 and M.6 of Appendix M). Photon
cross sections are generated from 1.0 GeV down to 1.0 keV. For the
standard codes the K-fluorescence energies are obtained using the
binding energies of Carlson30; again, fluorescence and Auger production
are allowed only for the highest-Z element of each material, regardless
of its weight fraction. For the P codes, the photoionization data and
relaxation data are taken from the compilation used in the SANDYL
code.10>12

The electron cross sections are also available from 1.0 GeV down to
1.0 keV, but are only generated up to the energy specified by the user
via input. These cross sections are obtained primarily from a modified
version of the DATAPAC program of the ETRAN Monte Carlo code systeml
with the following significant differences. The numerical electron
elastic scattering cross sections of Haggmark ~ ~.31 are used below
256.0 keV. The most important improvements in the physics of Version
3.0 relative to Version 1.0 are the new bremsstrahlung spectra and the
improvements in the Landau/Blunck-Leisegang theory of collisional
straggling. These are discussed in Sees. M.1 and M.3, respectively, of
Appendix M. There are also other changes of lesser importance. In
Version 1.0, the density effect correction to the electronic stopping
power is computed using the scheme described by Sternheimer and
Peierls.32 A more fundamental approach is employed in Version 3.0 as
part of the implementation of more recent collisional stopping powers
(see Sec. M.2 of Appendix M). For the standard codes, K-shell electron
impact ionization cross sections are computed according to the theory of
Kolbensvedt. 33 On the other hand, for the P codes the electron impact
ionization cross sections for all shells having binding energies greater
than 1.0 keV are obtained using the theory of Gryzinski.34

58

6. Cross-Section Data File - XDATA

In Version 1.0, XDATA was obtained by combining and improving the
two data files that were used by the two separate cross-section
generating programs in the older unintegrated versions of the ITS member
codes . The photon data were essentially the cross-section data of Biggs
and Lighthi1127)28 in modified format. The electron data consisted
primarily of LIBRARY TAPE 2 of the ETRAN Monte Carlo code system.l This
tape is distinguished from other library tapes of the ETRAN system in
that the empirical corrections to the bremsstrahlung cross sections were
based upon the experimental data of Rester35 and Aiginger.36 To these
basic data we added (a) the electron elastic scattering data of Haggmark
et al 31 (b) the high-energy pair production data of Hubbell Q ~.,29—— .)
and (c) the ionization/relaxation data of the SANDYL code.10>12
Combining the two data files led to a simplification of both the Job
Control Language and the internal logic of the cross-section generating
programs.

In Version 3.0 we have retained convenience of the single-file
approach, but this file is now much larger and much of the older data
has been replaced. The increased size is due primarily to (a) the data
that replaces the photon cross-section data of Biggs and Lighthill, (b)
the new numerical bremsstrahlung cross sections, (c) the expanded data
required for the new algorithms for sampling from the Landau/Blunck-
Leisegang energy loss straggling distributions, and (d) the data
required by the new algorithm for generating the density-effect
correction to the electron stopping powers. These data are a
consequence of the improved physical model discussed briefly in Sec. 5,
and in more detail in Appendix M.

59

7, Concluding Remarks

Version 1.0 of the ITS system represented the culmination of more
than a decade and a half of effort involving contributions by many
different people. Over the last seven years Versions 1.0, 2.0, and 2.1
have met with considerable success in a great variety of applications by
a world-wide user community. Nevertheless , we never expected and it was
never intended that this software should remain static. Version 3.0
represents the first major upgrade of the system and the extensive
improvements are as much a consequence of the many valuable suggestions
by the user community as they are the results of our own limited
experience . Even now, though, we are contemplating a number of
extensions and improvements to the cross sections, the Monte Carlo
model , and the software structure of Version 3.0. In this regard, we
continue to solicit feedback from the user community on further
modifications that will enhance the utility and accuracy of the system.
It is our intention to make subsequent versions of the system available
in as timely a fashion as possible.

We sincerely hope that Version 3.0 of the ITS system will prove as
successful a tool as Version 1.0 in the design and analysis of that
broad class of science and engineering applications in which the
transport of electron, x-ray, and gamma-ray radiation plays an important
role.

60

Appendfx A: Installation

A.1 Overview

As noted in the introduction, there are four components in the ITS
package:

1) XDATA --- The electron/photon cross-section data file
2) XGEN --- The cross-section generating program SOURCE file
3) ITS --- The Monte Carlo program SOURCE file
4) UPEML --- A file containing the updatf4processor25 which

emulates the standard CDC UPDATE processor.

We assume that these files have been provided on a magnetic tape. In this
appendix we give step-by-step instructions for the one time only
installation of the ITS package.*

A.2 Step-bY-Stev Installation Guide

STEP 1. Copy the four files named in A.1 from the tape to the storage
system on your computer. Note that the cross-section data file,
XDATA, is comprised of 96 column records while the remaining three
files are 80 column records.

STEP 2. After choosing the appropriate machine-dependent source code,
compile and link the UPDATE emulator. Note that you might need to
modify the OPEN statement for the file “oldpl” in subroutine FOPEN
in the UPEML package as noted in the comment cards found in this
subroutine. This should represent the only machine dependency in
UPEML . Retain the executable of this program; it is required for
both this installation process (“creation” run) and for subsequent
code selections and modifications as described in Sees. 2.2.1,
2.3.1, and 3.3 (“correction” runs). (NOTE that you can skip this
step if your system already has an update processor that
recognizes the standard CDC conventions.)

* Although the Job Control Language for accomplishing the creation
runs will very much depend on the local operating system, we provide
some guidance for setting up the job control stream in Appendix K.
This appendix also includes a discussion of all input\output units.

61

STEP 3. Create OLDPLS (old program libraries) from both the XGEN and
ITS SOURCE files using UPEML. The procedure is to run the
UPEML executable created in Step 2 with the following input*:

(eor}
N,L
“source cards from tape”

. . .
{eor)

This creation run option shows the use of the “N” option to
generate a new program library (NEWPL) and also a listing of
all the card images included in this NEWPL along with their
deck name (or common deck name) and sequence number
identifiers (this is requested by the “L”). The command line
is then followed by the SOURCE cards from tape appended as in-
line input to the program (i.e. , Fortran unit 5 input).
Alternatively, the source cards can be placed into a file, and
UPEML can be instructed to read the card images from that file
rather than in line. This is accomplished by adding an “I”
(comma delimited) to the command line. Then UPEML will read
the file “srcdk” for the source input. The user must assign
the file he desires to this file name in the Job Control
Language. That is, the Job Control Language should
equivalence the SOURCE file, XGEN or ITS, to the default file
name, “srcdk” . Alternatively, adding “I=[filename]” to the
command line will override “srcdk” with [filename].

The UPEML processor will indicate that this is a creation run.

The processor will create a binary NEWPL on the file “newpl”.
Note that future correction runs will read this NEWPL as an
existing OLDPL on the file “oldpl”. The binary program
library file created from the SOURCE file should be
conveniently named and saved as a permanent disk file. The
processor will also create a listing of the program library on
the file “listfl”. This listing should always be printed for
future reference; it will be needed to provide deck names (or
common deck names) and sequence numbers when using the
*INSERT, *DELETE, and *BEFORE directives in future correction

runs as described in Sec. 3.3.

Run UPEML twice: once on the XGEN SOURCE file and once using
the ITS SOURCE file as the input. The two resulting program
libraries should not be changed.

* More detailed information on the use of the UPEML processor to make
these “creation” runs can be found in Sec. 4 and Ref. 25.

62

WARNING - to facilitate communication with the authors
concerning bugs or desired program modifications, make all
local modifications to the program libraries by using the
UPEML processor. That is, make all modifications as UPEML
“correction runs” as discussed in Section 3.3. DO NOT use a
text editor to make local modifications to either the program
libraries or the SOURCE files!!!

When you have successfully performed Steps 1, 2, and 3, the installation
of the ITS package is complete. Now proceed to Sec. 2 of this document,
which describes how the member codes of ITS may be run using the
libraries created in this installation.

63

Appendix B: Sample Input Streams

In this Appendix we show sample input streams for running each of
the eight member codes of ITS. These examples are set up to
sequentially accomplish within a single job the four primary tasks:

(1) Select a cross-section generating code.
(2) Execute the cross-section generating code.
(3) Select a Monte Carlo code.
(4) Execute the Monte Carlo code.

The portions of the input streams required for these tasks are separated
from one another by {eor)s. Users may find it more efficient to break
this single job down into multiple jobs that perform a smaller number of
tasks . For example, tasks (1) and (2) can be run in one job and the
cross-section output saved for repeated use by the Monte Carlo codes.
If the codes are not being modified from one run to the next, the binary
executable can be saved, and it will not be necessary to repeat steps
(1) and (3). Nevertheless, beginning users will find it easier to
accomplish all four tasks within each job using input streams like those
given in the following examples.

The reader should note the liberal use of the commenting feature
(asterisk in column 1) of the free format execution input [tasks (2) and
(4)] in the following examples. These are useful for inserting
additional descriptive information into these input streams or for
deactivating keyword inputs instead of deleting them. Such comments are
permitted anywhere in the input stream where they will be processed by
the external parsing routine OPREAD. They are not allowed where they
would be read directly by Fortran READ statements instead of calling
OPREAD . For example, they cannot be used immediately after a line
containing the keywords, TITLE, SPECTRUM, RANDOM-NUMBER, and USER. In
addition for the ACCEPT codes, they cannot be used in the middle of the
specification for a given input body or input zone, or after the END
keyword that terminates input-zone input when the volumes of the
subzones are to be read in (see GEOMETRY keyword) .

Also , explicit execution keywords are often used in the execution
input where they are not required (i.e., they specify default values);
this merely makes the input streams more readable and explicitly shows
all options in effect for the run. ENERGY, ELECTRONS, DIRECTION, and
BATCHES are examples of keywords that are often used to explicitly
define default inputs in the sample input streams that follow.

The lines beginning with */ followed by at least one space are

comments that are ignored by the UPDATE processor when processing input
for tasks (1) and (3). Such comments must not appear within or
immediately before a sequence of Fortran statements that is being
inserted; rather, they should appear at the end of such a sequence.

64

In the following examples, the command line, “F,p” appears
explicitly in the inputs for tasks (1) and (3). This assumes that the
input files for these tasks are being read from the default input device
as described in Sec. 2.1.1. If the “I” parameter were included, the
command line “F,P,I” would be the only input from the default input
device (usually Fortran unit 5), and the remaining inputs for tasks (1)
and (3) would have to be assigned to file “srcdk” (see Sec. 2.1.1).

In a number of the sample input streams, examples of Fortran 77
PARAMETER modification are included as part of the input for tasks (1)
or (3). These are usually optional, but may be required when running
complex problems on machines with limited fast memory. Moreover, they
may significantly reduce computing costs by customizing memory
allocation to a particular problem. Note also the use of “*D,” and
II*III

9 as abbreviations for “*DELETE,” and “*INSERT,”, respectively. In
rare cases where user requirements exceed default allocations, the run
will terminate with a message informing the user as to which default
Fortran PARAMETER must be increased.

In addition to modifications to the Fortran that the more
sophisticated user may wish to add to the input for tasks (1) and (3),
there are a couple of modifications that may be required. As discussed
in Sec. 2.3.1, when running either of the M codes, Subroutine BFLD must
be modified to return values of the six components of the externally
applied electric and magnetic fields at any point within any input zone
for which a non-zero field has been specified (see the GEOMETRY keyword
in Sec. 2.3.2 for CYLTRANM and ACCEPTM). Examples of such modifications
are shown in the inputs for task (3) in Sees. B.7 and B.8. The other
much more rare case where modifications are required occurs when the
default electron energy grid of the cross-section generator will not
span the desired energy range for the Monte Carlo run -- i. e. , from the
maximum source energy to the desired global electron cutoff energy. In
this case the Fortran PARAMETERs INX and INMAX in the cross-section
generator and Monte Carlo codes, respectively, must be modified as

described under the description of the CUTOFFS keyword of Sec. 2.3.2 in
order to make possible the generation and use the expanded electron
energy grid. An example of these modifications are shown in Sec. B.6 in
the input for tasks (1) and (3). However, they are commented out in

that example since the span of the default energy grid is adequate for
the Monte Carlo run of that example.

These examples can only be properly understood after reading Sec.
2.

65

B.1 Sam~le Input for Running TIGER Code

(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX

{eor)
ECHO 1
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV STANDARD CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,TIGER
*DEFINE,~Gl
*/ VAX AND IBM ARE AUTOMATICALLY DOUBLE pREVISIONED AS OF VERSION 3.()

{eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************ GEOMETRy ******************************

* MATERIAL SUBZONES THICKNESS ELECTRON-CUTOFF FORCING
GEOMETRY 2

1 2 0.007
2 2 0.05

************************* SOURCE ********************************

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001
* DEFAULT DIRECTION
DIRECTION 0.0
************************* OUTpUT OpTIONS ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.
* SCALE-BREMS 5.0 2

66

B.2 SamDle Inrmt for Runniruz CYLTRAN Code

(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX

{eor)
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV STANDARD CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
*ENERGy 2.()

{eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,CyLT~
*DEFINE,?JJG1

{eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************* GEOMETRy *****************************

* ZMIN ZMAX RMIN RMAX MATERIAL NPHI NRHO NZ CUTOFF FORCING
GEOMETRY 3
-0.007 0.0 0.0 10.0 1 122
0.1 0.15 0.0 10.0 2 122
0.0 0.1 0.0 10.0

************************* SOURCE ********************************

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001
POSITION 0.0 0.0 -0.007

WDIUS 2.50
* DEFAULT DIRECTION
DIRECTION 0.0 0.0
************************* OUTpUT OpTIONS ******k*****************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.

67

B.3 Sample IIIDUt for Runnins! ACCEPT Code

(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX

{eor)
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV STANDARD CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,ACCEpT
*/ DEFINE,pLOTS
*DEFINE,RNG1

{eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************* GEOMETRy ******************************

GEOMETRY
RCC 0.00 0.00 0.00 0.00 0.00 -0.007

10.0
RCC 0.00 0.00 0.00 0.00 0.00 0.10

10.0
RCC 0.00 0.00 0.10 0.00 0.00 0.05

10.0
SPH 0.00 0.00 0.00 12.0
END

* TANTALUM
ZSUB1 +1

122
* ALUMINUM

ZSUB2 +3
122

* VOID
Z3 +2

* ESCAPE
Z4 +4 -1 -2 -3

END
* MATERIAL CUTOFF STRETCHING
1
2
0
0

************************* SOURCE ********+*++********************

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001

68

POSITION 0.0 0.0 -0.007
RADIUS 2.50

* DEFAULT DIRECTION
DIRECTION 0.0 0.0
************************* OUTpUT OpTIONS ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER opTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.
* PLOTS 3
* -15.0 15.0 -15.0 15.0 180. 90.
* -15.0 15.0 -15.0 15.0 0.0 0.0
* -15.0 15.0 -15.0 15.0 180. 30.

69

B.4 SamDle InDut for Running TIGERP Code

{eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,pCODES
*IDENT,pMOD
*/ THE FOLLOWING E~pLES OF pwETER MODIFICATION” ME USUALLy
*/ opTIONAL, BUT MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY REDUCING
*/ M~ORy REQIJIREMENTS.
*D,p~S.9

PARAMETER (INMT=2, INEM=l)
(eor)
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV P-CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,TIGER
*DEFINE,pCODES
*DEFINE,RNG1

{eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************* GEOMETRy ********************************

* MATERIAL SUBZONES THICKNESS ELECTRON-CUTOFF FORCING
GEOMETRY 2
1 2 0.007
2 2 0.05

************************* SOURCE ********************************

ELECTRONS
* PHOTONS
ENERGY 1.0
CUTOFFS 0.05 0.001
* DEFAULT DIRECTION
DIRECTION 0.0
************************* OUTpUT opTIONS **************+*********

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

70

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* . X-RAY PRODUCTION SCALING
SCALE-BREMS 500.

71

B.5 SamDle Inwt for Runninz CYLTRANP Code

{eor)
F,P
*IDENT,DEFINE
*DEFINE,V~
*DEFINE,pCODES
*IDENT,pMOD

*/ THE FOLLOWING EXAMPLES OF PARAMETER MODIFICATION ARE USUALLY
*/ opTIONAL,” BUT MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY REDUCING
*/ MEMORy REQUIREMENTS.
*D,pwS.9

PARAMETER (INMT=2, INEM=l)
(eor)
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV P-CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
{eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,CyLT~
*DEFINE,pCODES
*DEFINE,RNG1

(eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************* GEOMETRy &*******************************

* ZMIN ZMAX RMIN RMAX MATERIAL NPHI NRHO NZ CUTOFF FORCING
GEOMETRY 3
-0.007 0.0 0.0 10.0 1122
0.1 0.15 0.0 10.0 2122
0.0 0.1 0.0 10.0

************************* SOURCE *********************&**********

ELECTRONS
ENERGY 1.0
* ENERGY 2.0
CUTOFFS 0.05 0.001
POSITION 0.0 0.0 -0.007

RADIUS 2.50
* DEFAULT DIRECTION
DIRECTION 0.0 0.0
******************+***+** OUTpUT opTIONS ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

72

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.

73

B.6 Sample Input for Running ACCEPTP Code

(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,pCODES
*IDENT,pMOD
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*D,

THE FOLLOWING UPDATE OF INX IS NEEDED TO GENERATE A CROSS-SECTION SET
WITH EXPANDED ELECTRON ENERGY GRID. THE PARAMETER INMAX IN ANY MONTE
CARLO RUN THAT USES THE RESULTING CROSS-SECTION SET MUST BE
EQUAL TO OR GREATER THAN THE VALUE OF NMAX TO BE FOUND IN THE UNIT
IOUT (DEFAULT IOUT=6) OUTPUT FILE OF THE CROSS-SECTION GENERATOR RUN
(SETTING INMAX OF THE MONTE CARLO RUN TO THE VALUE OF INX IS ALWAYS
SUFFICIENT). THE EXPANDED ELECTRON ENERGY GRID IS NOT NEEDED IN
MONTE CARLO SAMPLE PROBLEMS WHERE THE SOURCE ELECTRON ENERGY IS 1.0
MeV AND THE GLOBAL ELECTRON CUTOFF ENERGY IS 0.05 MeV.
*D,pARAMS.5

PARAMETER (INX=88, INX1=INX+l, INL=501)

THE FOLLOWING EXAMPLES OF PARAMETER MODIFICATION ARE USUALLY
OPTIONAL, BUT MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY REDUCING
MEMORY REQUIREMENTS.
PARAMs .9

PARAMETER (INMT=2, INEM=l)
(eor)
ECHO 1
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV P-CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
(eor}
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,ACCEpT
*DEFINE,pCODES
*/ DEFINE,pLOTS
*DEFINE,~Gl
*IDENT,pMOD
*/
*/
*/
*/
*/
*/
*/
*/
*/

INMAX UPDATE FOR USING CROSS-SECTION SET WITH
ENERGY GRID: THE PARAMETER INMAX IN THE MONTE
EQUAL TO OR GREATER THAN THE VALUE OF NMAX IN
OF THE CROSS-SECTION GENERATOR (SETTING INMAX
RUN TO THE VALUE OF INX IS ALWAYS SUFFICIENT).

EXPANDED ELECTRON
CARLO CODE MUST BE
THE UNIT IOUT OUTPUT
OF THE MONTE CARLO

EXPANDED ELECTRON
ENERGY GRID IS NOT NEEDED IN THIS EXAMPLE WHERE THE SOURCE ELECTRON
ENERGY IS 1.0 MeV AND THE GLOBAL ELECTRON CUTOFF ENERGY IS 0.05 MeV.

PARAMETER (INMT=2, INEM=l , INMAX=88 , NSURV=2775,

74

*/ THE FOLLOWING EMpLES OF pARAMETER MODIFICATION ARE USUALLY
*/ opTIONAL,” BUT MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY REDUCING
*/ MEMORY REQUIREMENTS.
*D,pmS.9

PARAMETER (INMT=2, INEM=l , INMAX=64 , NSURV-2775,
*D,pARAMS.ll,pmS.14

$ INRANG=34, INTANG=INMAx/4+l, INEEL-13, INPEL=21,

$ INEPS=9, INGAS=1OOO, INLAN=5000, INPPS=21,

$ INLAMB=1591, JAHSUB=51, IJSPEC=l, JATPR=698,

$ JATAN=799, INTAB=1O, IMTAX=63)
*D,PARAMS. 28,PARAMS.30

PARAMETER (IKMAX = 4, IJMAX = 2,

$ IKPMAX = 4, IJPMAX = 2,

$ INIZON = 4, INSZON = 9)
*D,pARAMS.37

PARAMETER (IJSMAX = 1, IJFMAX =2,
*D,PARAMS. 39,PARAMS.42

$ IJFMXP = 2, IJFMP1 = IJFMXP+l,

$ IKFMAX = 2, IKFMXP = 2,

$ IKFMX1 = IKFMAX+l, IKFMP1 = IKFMXP+l,

$ INLF = 8, INLFP = 8)
*D,PARAMS. 81,PARAMS.82

$ IFPD = 43, INUMR = 4, ITMA = 88, NAZ = 5,

$ IJTY = 4, IARB = 1, NVIEWS = 3, NCZONE = 20,

(eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************* GEOMETRy ********************************

GEOMETRY
RCC 0.00 0.00 0.00 0.00 0.00 -0.007

10.0
RCC 0.00 0.00 0.00 0.00 0.00 0.10

10.0
RCC 0.00 0.00 0.10 0.00 0.00 0.05

10.0
SPH 0.00 0.00 0.00 12.0

END
ZSUBOO1 +1
122
ZSUBO02 +3
122
ZO03 +2
ZO04 +4 -1 -2 -3
END

* MATERIAL CUTOFF STRETCHING
1

2
0
0

75

************************* SOURCE ******************************%*

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001
*CUTOFFS 0.10 0.001

POSITION 0.0 0.0 -0.007
EUIDIUS 2.50

* DEFAULT DIRECTION
DIRECTION 0.0 0.0
************************* OUTpUT opTIONS” ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

*********+*************** OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.
* PLOTS 3
* -15.0 15.0 -15.0 15.0 180. 90.
* -15.0 15.0 -15.0 15.0 0.0 0.0
* -15.0 15.0 -15.0 15.0 180. 30.

76

B.7 SamDle IIIDUt for Runninz CYLTRANM Code

(eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX

{eor)
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV STANDARD CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
{eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,CyLT~
*DEFINE,MCODES
*/ DEFINE,pLOTS
*DEFINE,~Gl
*IDENT,TEST1
*/ THE FOLLOWING UpDATE RESULTS IN A ZERO ELECTRIC FIELD AND A MAGNETIC
*/ FIELD OF 10 KILOGAUSS IN THE AXIAL DIRECTION FOR ANY INpUT ZONE FOR
*/ ~ICH A NONZER() FIELD IS SpECIFIED.
*I,J3FJ-J.60

EZ = CZERO
BX = CZERO
BY = CZERO
BZ = CONE
RETURN

*/
*\ THE FOLLOWING ExAMpLES OF pARAMETER MODIFICATION ARE USUALLy
*/ opTIONAL, BUT MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY REDUCING
*/ MEMORy REQUIREMENTS<

*D,pARAMSc9

PARAMETER (INMT=2, INEM=l , INMAX=64 , NSURV=2775,
*D,pwSall,pARAMS.14

$ INRANG=34, INTANG=INMAx/4+l, INEEL=13, INPEL=21,

$ INEPS=9, INGAS=1OOO, INLAN=5000, INPPS=21,

$ INLAMB=1591, JAHSUB=51, IJSPEC=l, JATPR=698,

$ JATAN=799, INTAB=1O, IMTAX=63)
*J),pms.28,pARAMs.30

PARAMETER (IKMAX = 4, IJMAX = 2,

$ IKPMAX = 4, IJPMAX = 2,

$ INIZON = 3, INSZON = 9)
*D,pARAMS.37

PARAMETER (IJSMAX = 1, IJFMAX =2,
*D,pARAMS. 39,PARAMS.42

$ IJFMXP = 2, IJFMP1 = IJFMXP+l,

$ IKFMAX = 2, IKFMXP = 2,

$ IKFMX1 = IKFMAX+l, IKFMP1 = IKFMXP+l,

$ INLF = 8, INLFP = 8)

77

(eor)
ECHO 1
TITLE
...1.0 MEV TA/AL TEST PROBLEM
************************* GEOMETRy ********************************

* ZMIN ZMAX RMIN RMAX MATERIAL NPHI NRHO NZ FIELD CUTOFF FORCING
GEOMETRY 3
-0.007 0.0 0.0 10.0 1 122
5.0 5.05 0.0 10.0 2 122
0.0 5.0 0.0 10.0 0 0001

* -0.007 0.0 0.0 10.0 1 1 1 4
************************* SOURCE ********************************

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001
POSITION 0.0 0.0 -0.007

RADIUS 2.50
* DEFAULT DIRECTION
DIRECTION 0.0 0.0
*****************+******* OUTpUT opTIONS ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.
*pLOTS O.O 10.O -2.()8.()

* ORBITS 100

78

B.8 SamDle InDut for Runninsz ACCEPTM Code

{eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX

{eor)
MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV STANDARD CODES CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
{eor)
F,P
*IDENT,DEFINE
*DEFINE,VAX
*DEFINE,ACCEpT
*DEFINE,MCODES
*/ DEFINE pLOTS
*DEFINE,RNG1
*IDENT,TESTA
*/ THE FOLLOWING UPDATE RESULTS IN A ZERO ELECTRIC FIELD AND A MAGNETIC
*/ FIELD OF 10 KILOGAUSS IN THE ~IAL DIRECTION FOR ~ INPUT ZONE J77R

*/ ~IcH A N’ON’ZER() FIELD Is SPECIFIED.

*I,BF7D.(30

EZ = CZERO
BX = CZERO
BY = CZERO
BZ = CONE
RETURN

*/
*/ THE FOLLOWING
*/ OpTI(_JNAL,BUT

EXAMPLES OF PARAMETER MODIFICATION ARE USUALLY
MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY REDUCING

*/ MEMORY REQUIREMENTS.
*D,pARAMS.9

PARAMETER (INMT=2, INEM=l , INMAX=64 , NSURV=2775,
*J),pARAMs.28,pms.30

PARAMETER (IKMAX

$ IKPMAX

$ INIZON
*D,pmS.37

PAMMETER (IJSMAX
*D,p~S.39,pARA,MS.42

$ IJFMXP

$ IKFMAX

$ IKFMX1

$ INLF
*D,pARAMs.81,pms.82

$
$

{eor)
ECHO 1
TITLE
...1.0

= 4, IJMAX = 2,
= 4, IJPMAX = 2,
= 4, INSZON = 9)

——

——
——
.
——

IFPD = 43, INUMR
IJTY = 4, IARB

MEV TA/AL TEST PROBLEM

1, IJFMAX =2,

2, IJFMP1 = IJFMXP+l,
2, IKFMXP = 2,
IKFMAX+l , IKFMP1 = IKFMXP+l,
8, INLFP = 8)

= 4, ITMA = 88, NAZ = 5,
= 1, NVIEWS = 3, NCZONE = 20,

79

************************* GEOMET’Y ********************************

GEOMETRY
RCC 0.00 0.00 0.00 0.00 0.00 -0.007

10.0
RCC 0.00 0.00 0.00 0.00 0.00 5.00

10.0
RCC 0.00 0.00 5.00 0.00 0.00 0.05

10.0
SPH 0.00 0.00 0.00 12.0
END
ZSUBX1 +1
122
ZSUBX2 +3
122
ZX3 +2
ZX4 +4 -1 -2 -3
END

* MATERIAL FIELD CUTOFF STRETCHING
1 0
2 0
0 1
0 0

************************* SOURCE ********************************

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001
POSITION 0.0 0.0 -0.007

RADIUS 2.50
* DEFAULT DIRECTION
DIRECTION 0.0 0.0
************************* OUTpUT OpTIONS ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2
NBINT 2

PHOTON-FLUX 1 2
NBINE 2
NBINT 2

************************* OTHER OpTIONS ***********************

HISTORIES 10000
BATCHES 10
* ... X-WY PRODUCTION SCALING
SCALE-BREMS 500.
* PLOTS 3
* -15.0 15.0 -15.0 15.0 180. 90.
* -15.0 15.0 -15.0 15.0 0.0 0.0
* -15.0 15.0 -15.0 15.0 180. 30.

80

Appendix C: TIGER Codes - Geometry

The geometry of the TIGER codes is the simplest of the ITS member
codes . It is strictly one dimensional. A particle trajectory is
described only in terms of the z coordinate of position and the z
direction cosine. Nevertheless, this is often all that is necessary,
and, because the TIGER codes are the fastest and simplest to use, they
should always be considered. They are especially useful in obtaining
accurate answers to questions involving very basic transport phenomena.

C.1 Problem Geometry

Beginning at z=O.0, layers are stacked along the positive z axis
according to the order in which they are read in as described under
keyword GEOMETRY. For each layer the user must define: a) the material
index, b) the number of subzones into which the layer is to be divided
for purposes of scoring charge deposition, energy deposition, and
particle flux (see Appendix L), and c) the thickness of the layer. The
material indices are defined by the order in which the materials are
specified in executing the cross-section generating code as described in
Sec. 2.2.2.

Other optional zone-dependent parameters are also available to the
user. He may raise the electron cutoff energy above its global value
(see keyword CUTOFFS), and he may force a certain fraction of photons
entering a given input zone to interact (see Sees. H.4 and H.6 of
Appendix H). Specification of these parameters is described under
keyword GEOMETRY.

C.2 Conventions for Escaping Particles

In addition to quantities internal to the problem geometry such as
charge deposition, energy deposition and particle flux, radiation that
escapes may also be scored. The fact that the default source is located
at z=O.O leads to a certain convention in defining particle escape.
Particle escape is classified according to the following definitions:

a) Transmitted radiation is radiation that escapes from the
maximum-z boundary of the problem.

b) Reflected radiation is radiation that escapes from the minimum-z
boundary of the problem.

These definitions are maintained re~ardless of how the source is
defined.

81

Appendix D: CYLTRAN Codes - Geometry

There are a variety of experimental problems in which the symmetry
requirements of the CYLTRAN codes are satisfied to a good approximation.
This is especially true in those experiments for which the radiation
source is itself a cylindrical beam, as in the case of many pulsed and
steady-state electron accelerators. The only essential requirement,
however, is that the material zeometry, as specified by the input zones,
be cylindrically symmetric. The trajectories themselves are fully three
dimensional . In his correction run (see Sec. 3.3) the more
sophisticated user may wish to define a non-axisymmetric source or, in
the case of CYLTRANM, a non-axisymmetric field configuration, along with
whatever azimuthal tallies he desires. Note that the logic is already
included for scoring azimuthally-dependent escape distributions (see
keywords ELECTRON-ESCAPE and PHOTON-ESCAPE) and azimuthally-dependent
charge deposition, energy deposition, and particle fluxes (see keywords
ELECTRON-FLUX, PHOTON-FLUX, and GEOMETRY, as well as the discussion of
automatic subzoning in Appendix L).

D.1 Problem Geometry

The material geometry for the CYLTRAN codes consists of a right
circular cylinder of finite length, the axis of which coincides with the
z axis of the cartesian system that describes the particle trajectories.
The location of this cylinder, hereafter referred to as the problem
cvlinder, along the z axis is completely arbitrary. The entire volume
within the problem cylinder must be specified in terms of material or
void input zones, each of which is bounded by two and only two cylinders
coaxial with the z axis and two and only two planes perpendicular to the
z axis.

The material configuration is then conveniently described by the
half section of the problem cylinder obtained by passing a plane through
its axis. An example of such a half section is shown in Fig. D-1. The
horizontal base line is the axis of the problem cylinder, and the other
horizontal lines are labeled by the radii of the corresponding
cylindrical boundaries. The vertical lines are labeled by the z
coordinate of the corresponding plane boundaries. The solid lines are
actual material boundaries; the broken lines are not. The dashed lines
are employed either to complete the perimeter of the problem cylinder
half section or to break more complex zones of a given material (e.g.,
those having L-shaped half sections in Fig. D-1) into the simpler input
zones required by the code (i.e. , zones whose half sections are
rectangles). The dotted lines describe subzoning of a given input zone
for purposes of obtaining charge deposition, energy deposition, and flux
profiles.

Each zone in Fig. D-1 is bounded by solid and/or dashed lines and
contains a material index (circled). A zero index defines a void zone;
otherwise, the material indices are defined by the order in which the
materials are specified in executing the cross-section generating code

82

as described in Sec. 2.2.2. Each of these input zones requires a single
input card for its description. The dotted lines illustrate subzoning
of a particular input zone into equal axial and/or radial increments.
Azimuthal subzoning is also possible as discussed under the GEOMETRY
keyword of Sec. 2.3.2. It also follows from that discussion that
separate input cards describing these subzones are not reauired. This
description is accomplished internally by the code using the subzoning
parameters specified on the input card describing the input zone. ~
feature allows the user to obtain three-dimensional charge de~osition,
ener~v deposition, and flux profiles within a Fiven inuut zone with a
single input card.

1
t

2.00cm ~ ~.-=. ----

1.25cm ~

0.00cm —————+

o1

1

t,

o1
10

00

8

!
Z-AXIS

Go
●00000000007

●

5
● oooooooooo-

●

●

3

I
I

c1

11
—

Figure D-1: Example of the Half Section of a Problem Cylinder

83

The following input cards describe the the problem geometry
illustrated in Fig. D-1.

GEOMETRY 6
-2.50 -2.00 0.00 1.25 1
-1.50 0.00 0.00 1.50 2 1 3 2
-2.00 -1.50 0.00 1.25 0
-2.50 -1.50 1.25 2.00 0
-1.50 0.00 1.50 2.00 1
0.00 0.25 0.00 2.00 1

The numbers in the lower right hand corners of the subzones demonstrate
how the code internally numbers these subzones. Subzone numbers are
immediately assigned as each geometry card is read. Therefore, subzones
are numbered before the next card is read. In the example, the second
card, which describes the second input zone, generates 6 subzones
(subzones 2-7). The next input zone, therefore, has a subzone number of
8. It is important that the user understand this numbering scheme in
order to properly interpret spatially-dependent outputs.

Other optional input-zone-dependent parameters are also available
to the user. He may raise the electron cutoff energy above its global
value (see keyword CUTOFFS), and he may force a certain fraction of
photons entering a given input zone to interact (see Sees. H.4 and H.6
of Appendix H). Finally, in the case of CYLTRANM, he may specify the
presence of macroscopic electric fields (in voids only) and/or magnetic
fields. Specification of these parameters is also described under the
GEOMETRY keyword.

D.2 Conventions for Escaping Particles

In addition to quantities internal to the problem cylinder, such as
charge deposition, energy deposition, and particle flux, radiation that
escapes from the problem cylinder may also be scored. Because the
default source is a disk source (beam) at the minimum-z boundary of the
problem cylinder, a certain convention is used in defining particle
escape . Particle escape is classified according to the following
definitions :

a) Transmitted radiation is radiation that escapes from the
maximum-z boundary of the problem cylinder.

b) Reflected radiation is radiation that escapes from the minimum-z
boundary of the problem cylinder.

c) Laterally escaping radiation is radiation that escapes from the
curved lateral surface of the problem cylinder.

These definitions are maintained regardless of how the source is
defined.

84

Appendix E: ACCEPT Codes - Geometry

The ACCEPT codes provide experimenters and theorists with a method
for the routine solution of coupled electron/photon transport through
three-dimensional multimaterial geometries described by the

combinatorial method. In the combinatorial scheme, the problem input
zones are built up out of primitive bodies. This is in contrast to more

traditional schemes that define the zones in terms of bounding surfaces.
The SANDYL code12 is an example of the latter in that it makes use of a
system of paraxial quadratic surfaces and cartesian planes in order to
define the problem zones. We find the combinatorial method of
specifying input zones in terms of solid bodies to be simpler, more
intuitive, and less ambiguous than specification in terms of boundary
surfaces. The combinatorial scheme8~9 also learns as the calculation
progresses; at any particular time it makes use of information obtained
from past experience in order to improve the efficiency of its search
procedures used in particle tracking. This same learning ability
precludes the requirement, typical of many other geometry schemes, for
inputing a substantial amount of tracking information.

E.1 Problem Geometry

With the ACCEPT codes the user employs the combinatorial-geometry
method in order to describe the three-dimensional material configuration
of the problem. This task is accomplished in four distinct steps:

a) Define the location and orientation of each solid geometrical
body required for specifying the input zones.

b) Specify the input zones as combinations of these bodies.
c) Specify the volumes of the subzones, if necessary.
d) Specify the material in each input zone.

E.1.l Bodv Definition -- The Combinatorial-geometry method requires
a library of geometrical body types from which the user may choose in
order to describe his problem configuration. The information required
to specify each body type in a three-dimensional cartesian system is as
follows:

a) Rectangular Parallelepipeds (RPP) -- Specify the minimum and
maximum values of the x, y and z coordinates that bound a
rectangular parallelepipeds whose six sides are perpendicular to
the coordinate axes.

85

Xmax

z

t Ymin Ymax
/0 .0

----- -----
/-

0
0-

/
/ /

0“ *Y

---- Zmin

Figure E-1:

b) Sphere (SPH) --

I

Zmax

Rectangular Parallelepiped (RPP)

Specify the components of the radius vector V to
the center of the sphere and the radius R of the sphere.

ov—

\R

Figure E-2: Sphere

c) Right Circular Cylinder (RCC) --
radius vector V to the center of

(SPH)

Specify the components of a
one base, the components of a

vector H from the center of that base to the center of the other
base, and the radius R of the cylinder.

Figure E-3: Right Circular Cylinder (RCC)

86

d)

e)

f)

Right Elliptical Cylinder (REC) -- Specify the components of a
radius vector V to the center of one of the elliptical bases,
the components of a vector H from the center of that base to the
center of the other base, and the components of two vectors RI
and R2 that define the major and minor axes, respectively, of
the bases. This body has not yet been implemented.

y

RI \ R2

Figure E-4: Right Elliptical Cylinder (REC)

Truncated Right Angle Cone (TRC) -- Specify the components of a
radius vector V to the center of one base, the components of a
vector H from the center of that base to the center of the other
base, and the radii RI and R2 of the first and second bases,
respectively.

—R2

—~

—Rl

Figure E-5: Truncated Right Angular Cone (TRC)

Ellipsoid (ELL) -- Specify the components of the radius vectors
V1 and V2 to the foci of the prolate ellipsoid and the length of
the major axis R.

87

, V2

g)

h)

i)

VI

Figure E-6: Ellipsoid

—

(ELL)

Wedge (WED) -- Specify the components of a radius vector V to
one of the corners and the components of three mutually
perpendicular vectors al, a2, and a3 starting at that corner and
defining the wedge such that al and a2 are the two legs of the
right triangle of the wedge.

-

Figure E-7: Right Angle Wedge (WED)

Box (BOX) -- Specify the components of a radius vector V to one
of the corners and the components of three mutually
perpendicular vectors al, a2, and a3 starting at that corner and
defining a rectangular parallelepipeds of arbitrary orientation.

A
as
—

L /

a2 4—

al
—

v >
—

Figure E-8: Box (BOX)

Arbitrary Polyhedron (ARB) -- Specify the
6, 7, or 8) radius vectors, V1 through Vk,

components of k (k =
to the corners of an

88

arbitrary nonreentrant polyhedron of up to six sides, and
specify the indices of the corners of each face by means of a
series of four-digit numbers between “1230” and “8765” (enter
zero for the fourth index of a three-cornered face). The digits
must appear in either clockwise or counterclockwise order.

VI
—

V2
—

- V3
—

Figure E-9: Arbitrary Polyhedron (ARB)

E.1.2 Specification of Input Zones -- Having defined the necessary
geometrical bodies, the user must then resolve the entire problem
geometry into input zones satisfying the following criteria:

a)

b)

c)

An input zone may consist only of either a single homogeneous
material ~ a void.

Every point of the problem geometry must lie within one and onlv
~ input zone.

The final input zone must be a void zone surrounding the rest of
the problem geometry that is entered through a non-reentrant
surface; any particle entering this zone is tallied as an escape
particle.

Input zones are specified as appropriate combinations of the
previously defined bodies. Such combinations may be as simple as just a
single body, or they may consist of complex intersections, unions and
differences of various bodies. We illustrate the principles of input
zone specification with the following examples where, for simplicity, we
omit the escape zone. Each example involves only two zones, A and B,
defined by the cross hatching in Fig. E-10.

89

EzlINPUT ZONE A

R
INPUT ZONE B

\

(a)

/

BODY #3

(b)

(c) (d)

Figure E-10: Illustration of Various Methods of Combining Bodies for
Specification of Input Zones.

90

In Fig. E-10a, zone A consists of a sphere, body #1, that is
tangent to zone B, which consists of a right circular cylinder, body #2.
Input zone specification is simply

A=+l
and B = +2 .

That is, inrmt zone A consists of all spatial points that lie within
bodv #1, and similarly for zone B.

In Fig. E-10b, the sphere is inserted into a hole that has been cut
in the cylinder so that

A=+l
and B = +2 -1 .

Thus , inDut zone B consists of all spatial Doints that lie within body
#2 AND not within body #1. Input zone B is specified as the difference
between two bodies.

In Fig. E-1OC, bodies #1 and #2 consist of the same homogeneous
material (or void), but they are imbedded within a second right circular
cylinder, body #3, of another material. The specification is

A=+1OR+2
and B = +3 -1 -2 .

Thus , inDut zone A consists of all spatial points that lie within EITHER
body #1 OR bodv #2. This is an example of input zone specification as a
union of bodies.

In Fig. E-10d, the intersection of body #1 and body #2 consists of
a single homogeneous material; the rest of the space within body #3 is
filled with another material. The specification is

A=+l +2
and B = +3 -1 OR +3 -2.

Thus , in~ut zone A consists of all spatial points that lie within body
#1 AND within bodv #2.

Note that:

a) The OR operator refers to all following body numbers until the
next OR operator is reached or a new input zone is initiated.

b) The AND operator is implied before every body number that is not
preceded by an explicit OR operator, except that the first OR
operator of a union is an implied EITHER.

Though Figs. E-10a and E-10b are useful for demonstrating how input
zones are constructed, they are not good examples of transport
geometries because they are reentrant. By reentrant we mean that there

91

are some paths by which escaping particles can reenter those geometries.
They can be made non-reentrant by enclosing them completely in a
non-reentrant body such as a sphere and letting the escape zone be the
region outside the sphere.

E.1.3 Volume Specification -- A minor but important change in the
specification of volumes has been initiated in Version 3.0. In all

earlier versions, the volumes of the input zones were specified, whether
set internally or supplied by the user. In Version 3.0, the volumes of
the problem subzones are to be specified. Of course, if automatic
subzoning has not been requested for any input zone, the input zones are
the same as the problem subzones. Another minor point is that the
volume of the escape zone is ~ specified. The key point here is that
if the user wishes to supply the volumes for a run in which he has
requested subzoning, he must ensure that the volumes are specified in
the proper sequence.

A general scheme for the precise calculation of the volumes of
zones defined by the combinatorial method is not possible. The user may
select one of three options via [parameter(l)] associated with the
GEOMETRY keyword. The default value of O will cause the code to set all
volumes to 1.0 cm3. A value of 1 allows the user to read in the volumes
as described below. Finally, if the geometry is such that a
satisfactory method exists for calculating the volumes internally, the
user may set [parameter(l)] equal to 2 and use a correction run to
insert the necessary logic at the proper place near the end of
Subroutine JOGEN. The proper location is commented in the coding.

E.1.4 Material Specification -- A material index is assigned to
each input zone. A zero index defines a void zone; otherwise, the
material indices are defined by the order in which the materials are
specified in executing the cross-section generating code as described in
Sec. 2.2.2. The method of inputing the material indices is described
under the keyword GEOMETRY.

E.2 InDut Data

The geometry input for the ACCEPT codes is inserted according to
the following sequence. The data is inserted in free format form with
spaces or commas as delimiters. Simple examples can be found in Sees.
B.3, B.6 and B.8 of Appendix B.

E.2.1 Body Data -- The body data begin immediately after the line
containing the GEOMETRY keyword. The method of describing each of the
body types is discussed in Sec. E.1.l and illustrated in Table E-1. The
description of each new body must begin a new line of input, and the
first parameter on that line must be the appropriate three character
code for the body type. Table E-1 lists the additional input parameters
reauired (no defaults) for each body type in their proper sequence. The
user is free to distribute these parameters over as many lines as he
pleases. A line beginning with the parameter END signals that the
description of all of the problem bodies is complete.

92

E.2.2 Input Zone Data -- Geometrical specification of the input
zones begins immediately after the line containing the END parameter for
the body data. The method of describing the input zones in terms of the
input bodies is discussed in Sec. E.1.2. Body numbers are determined by
the order in which the bodies are read in. The description of each new
input zone must begin on a new line of input, and the first parameter on
that line must be a character string beginning with the letter Z. This
parameter is followed by a string of parameters that specifies the input

Table E-1: Data Required to Describe Each Body Type

Bodv TvDe

BOX

RPP

SPH

RCC

REC

ELL

TRC

WED

ARB

END

Real Data Defining Particular Bodv

h
A2x

Xmin

Vx

Vx
R

Vx
Rlx

Vlx
R

Vx
RI

Vx
A2x

Vy
A2y

Xmax

Vy

Vy

Vy
Rly

Vly

Vy
R2

Vy
A2y

Vly
v3y
v5y
v7y

Vz
A2z

Ymin

Vz

Vz

Vz
Rlz

VIZ

Vz

Vz
A2z

Vlz
V3Z
V5Z
V7Z

Alx
A3x

Ymax

R

Hx

Hx
R2x

V2X

Hx

Alx
A3x

V2X
V4X
V6X
V8X

Vlx
V3X
V5X
V7X
Face Descriptions (see note

No Data

Aly
A3y

Zmin

Hy

Hy
R2y

v2y

Hy

Aly
A3y

v2y
v4y
V6y
V8y
below)

Alz
A3z

Zmax

Hz

Hz
R2z

V2Z

Hz

Alz
A3z

V2Z
V4Z
V6Z
V8Z

Note: The final line of the arbitrary polyhedron input contains a four-
digit number for each of the faces. Thirty data values are
required for this body type; if there are fewer than eight
corners and six faces, zero values must be entered. See Section

E.1,1 for more details.

93

zone following the form of the right hand sides of the equations of Sec.
E.1.2. For example, input lines describing the two input zones in Fig.

E-10d are

Zool +1 +2
ZO02 +3 -1 OR +3 -2 .

The user is free to distribute the parameters necessary for describing
an input zone over as many lines as he pleases. A line beginning with
the parameter END signals that the description of all of the problem
input zones is complete.

In Version 2.0 we began implementing the automatic subzoning
features described in Appendix L into the ACCEPT codes. In addition to

reductions in memory requirements and run time, this powerful option
eliminates the burdensome task of otherwise generating an input-zone
description for each individual subzone. The ACCEPT codes now feature
the full three-dimensional subzoning of input zones consisting of a
single body of type RCC, RPP, BOX, or SPH. The automatic subzoning
capability is invoked in the following way. All input zones to be
subzoned are read in before those that are not to be subzoned. The
first parameter on the line that begins the description of a zone to be
subzoned must begin with the character string ZSUB rather than the
single character Z for zones that are not to be subzoned. An input zone
to be subzoned must consist wholly of a single body. In Version 3.0,
that body type can only be RCC, RPP, BOX, or SPH. The line following
the description of the input zone must contain three integers that
define the number of equal-increment subzones into which the body is to
be divided along the three coordinate directions. The following is a
description of how the three integers are used for the four body types:

1) RCC -- The three integers correspond to subzoning azimuthally
about the cylinder axis, in distance from the axis (radially),
and in distance along the cylinder axis (axially) from the
center of the base defined by the radius vector V in Fig. E-3,
respectively. The azimuthal angle is defined with respect to
the vector Cl of the cartesian unit-vector triad, (cl, ~2, h),
satisfying the right-hand rule, where h is a unit vector in the
direction of H. In general, CI is in the direction jxh so that
when h-k, the triad degenerates to (i, j, k). For the special
case where h is paraxial with the y axis, the triad is (i, -k,
h) or (i, k, h) for h=j or h--j, respectively.

2) RPP -- The three integers correspond to subzoning along the
three cartesian directions, x, y, and z, respectively. Here,
the body-based coordinate directions are the same as those of
the laboratory system. Distances are measured along the axes
from the point (Xmin, Ymin, Zmin) defined in Fig. E-1.

3) BOX -- The three integers correspond to subzoning along the
three cartesian directions, al, a2, and a3, respectively, as
defined in Fig. E-8. Distances are measured from the point
defined by the radius vector V.

94

4) SPH -- The three integers correspond to subzoning azimuthally
about the laboratory z axis as measured with respect to the
positive x axis, in polar angle as measured with respect to the
laboratory z axis, and in distance from the center of the sphere
(radially), respectively.

E.2.3 Volume Data -- If [parameter(l)] associated with the GEOMETRY
keyword is equal to 1, the array containing the volume data for the
problem subzones is inserted immediately after the line containing the
END parameter for the data specifying the geometry of the input zones.
The input zones are numbered according to the order in which they are
read. If an input zone is not to be subzoned, then it becomes a single
subzone. Therefore, if automatic subzoning has not been requested for
any input zone, the subzones are identical with the input zones (except
that the escape zone is not included among the subzones). If an input

zone is to be subzoned, the subzones are numbered by incrementing the
body-based coordinates in an order corresponding to the inverse of the
order of the three integers specifying the subzoning (see previous
subsection) . For example, if an input zone consisting of an RPP is to
be subzoned, the subzones are generated by first incrementing the z
coordinate , then the y, and finally the x. The volume array must
contain an entry for each problem subzone (no defaults), excluding only
the escape zone. If [parameter(l)] is not equal to 1, these input data
are omitted.

E.2.4 Material Data -- For input of material data, return to the
discussion under the GEOMETRY keyword.

95

Appendix F: P Codes

The SANDYL12 code is a three-dimensional multimaterial code. Its

construction was oriented toward relatively low-energy photon sources
and the understanding of internal electromagnetic phenomena in complex
geometries. In particular, it includes a detailed modeling of atomic
shell ionization and relaxation phenomena for electron and photon
energies down to 1.0 keV. The early codes of the TIGER series, on the
other hand, were developed primarily for relativistic electron beam
applications, where atomic shell effects usually play only a minor role
and are, consequently, treated in a more cursory fashion. Nevertheless,
these potential low-energy limitations were purely incidental, and
there was no reason why the more complete description of atomic shell
effects available in the SANDYL code could not be included in the
standard codes of the TIGER series. Those codes in ITS that include the
more detailed ionization/relaxation physics from the SANDYL code are
referred to as the P codes. The P codes contain the logic necessary for
describing ionization and relaxation of all K, Ll, L2, L3, M (average),
and N (average) shells having binding ener ies greater than 1.0 keV for

%elements with atomic numbers 2=1 to Z=lOO.l)12

Once a photoionization or electron impact ionization event has
occurred, several different relaxation cascades are possible. A large
quantity of atomic relaxation data is required for the stochastic
description of these cascades. These data, together with the
photoionization probabilities, are tabulated in Ref. 10, which also
includes a discussion of the cross sections for electron impact
ionization and details of the implementation of these processes in the P
codes.

The standard codes only include a description of the electron
impact ionization of the K shell of the highest-atomic-number element in

a given material. Similarly, following either this impact ionization or

a photoelectric event, these codes only model relaxation processes
(production of Auger electrons and fluorescent photons) from this same
shell. Nevertheless, for the vast maioritv of problems, the P codes
give results that are virtually identical to those of the standard
codes. This is important because the P codes require a significant
increase in both memory and run time as compared with their standard
counterparts. If the user feels that the additional sophistication of
the P codes may be important for his or her application, results from
the P codes should first be compared with those of the standard codes
for sample problems typical of that application in order to determine
whether the differences, if any, in the desired results are significant.
This comparison should only be necessary for those applications where
low-energy transport plays a major role -- e.g., problems involving
low-energy photon sources. Only if there are significant differences
should the P codes be used for subsequent runs.

96

Appendix G: M Codes

In many instances the value of strictly collisional transport
models is questionable because the actual experiments involve
macroscopic electric and magnetic fields whose effects upon radiation
transport not only cannot be neglected but may even be more important
than the collisional effects. In order to address this situation, we
have developed a model that combines sophisticated coupled
electron/photon collisional transport with transport in externally
applied macroscopic electric and magnetic fields of arbitrary spatial
dependence.

The model allows magnetic fields in both material and void regions.
Of course, magnetic fields alone will only deflect electrons without
changing their energy. The procedure for combining collisional energy
loss and deflection with magnetic deflection has been described
elsewhere in detail.13~37~38 Briefly stated, the rectilinear random-
walk substeps of the field-free mode11~2 are replaced by
numerically-integrated segments of field trajectories in vacuo whose
integrated areal densities are equal to those of the substeps. Sampled
collisional deflections are superimposed upon the electron direction at
the end of each of these vacuum-trajectory segments. The numerical
integration scheme determines those locations along the segment that
correspond to energy deposition and secondary production (knock-on
electrons, bremsstrahlung photons and relaxation particles from electron
impact ionization), as well as the intersections of the trajectory
segments with material boundaries. Magnetic fields should be ignored in
regions where transport is collision dominated, because the combined
simulation is quite expensive in such cases, though the results are the
same as for collisions alone.

Electric fields (or combined electric and magnetic fields) are
allowed only in void regions. This restriction has been imposed because
no sufficiently general scheme has been derived to account for the
effects of changes in the electron energy produced by the macroscopic
electric field upon the energy-dependent multiple-interaction
collisional processes within a given substep. For those applications
where electric fields are present within material media (e.g. , potential
buildup in dielectrics and sustaining fields in gas lasers), special
algorithms3g that depend upon the ratio of the electric potential
gradient to the electronic stopping power must be introduced to handle
this difficulty. Even with the restriction of electric fields to void
regions, the model is applicable to a wide variety of problems -- for
example, problems involving accelerating diodes.

The method for accurately integrating the vacuum equations of
motion in order to obtain the vacuum-trajectory segments is the
essential feature of the model, whether the fields are present in
material or in void regions. In voids the integration is interrupted
whenever the trajectory intersects a material boundary or a
problem-escape boundary. In material regions the integration is also,

97

and more frequently, interrupted whenever the areal density traversed
corresponds to a location where energy is to be deposited or secondary
production occurs, or equals the areal density of the appropriate
substep. In the latter case, collisional scattering and energy loss are
accounted for and a new trajectory segment is initiated A fourth- to
fifth-order Runge-Kutta-Fehlberg routine with automatic step-size
control (RKF) ,14 substantially modified to include boundary-crossing
logic and other constraints, is employed to integrate the equations of
motion in vacuo. The reasons for this choice are discussed at length in
Ref. 38

The current algorithm includes a major improvement over the method
described in Ref. 14. The basic RKF integrator was designed to integrate
over some specific interval of the independent variable. However, model
applications invariably require interruption of the integration at the
roots of any one of several possible constraint functions that are
functions of the dependent variables. The most common example is the
root corresponding to the intersection of an electron trajectory with a
zone boundary. Other examples are the roots corresponding to the
locations for energy deposition and secondary production. In the
pre-ITS versions of the M codes, we were forced to use relatively crude
approximate solutions at these roots, which limited the overall accuracy
of the model predictions to something substantially less than the
inherent accuracy of the integrator.14 The algorithm now includes an
extended RKF procedure15 that permits interruption of the integration at
any one of a number of constraint functions of both the dependent and
independent variables with an accuracy that is comparable to the
inherent accuracy of the integrator. The more sophisticated user is
free to add his own constraint functions for interrupting the
integration. The constraint functions must be defined in subroutine
CSTR.

98

Appendix H: Biasing Options and Variance Reduction

From a practical, if not theoretically rigorous, point of view,
biasing in Monte Carlo can generally be described as the distortion of
the natural analog to achieve variance reduction in certain desired
output quantities. Variance reduction refers to the attainment of lower
statistical uncertainty for the same amount of run time or,
equivalently, the attainment of the same statistical uncertainty in a
lesser amount of run time. Except where absolutely necessary, biasing
should be used sparingly. In any case, it should be used with great
care. Reckless use of biasing (overbiasing or underbiasing) can lead to
results that are erratic and/or easily subject to misinterpretation.
Nevertheless , there are a few biasing options in ITS that are easily
accessed via the input described in Sec. 2.3.2 and that have proven very
useful in specific applications.

H.1 Trarmed Electrons

In certain problems where only electrons that cross certain
boundaries are important, the option activated by the TRAP-ELECTRONS
keyword may be employed to reduce run time significantly. The parameter
associated with this keyword is the global electron trapping energy.
Internally, an array of zone-dependent electron trapping energies is
obtained, each element of which is the greater of this global trapping
energy or the zone-dependent cutoff energy for that particular zone (see
Sec. H.6). The option becomes effective when an electron is trapped,
that is, does not have enough energy to escape from a zone (or subzone).
When an electron with energy less than the zone-dependent trapping
energy is trapped, its history is immediately terminated via local (on-
the-spot) deposition of its charge and remaining energy. This option is
commonly used when one is primarily interested in the accurate transport
of those electrons escaping from all or some portion of the problem
geometry. Great care should be taken in employing this option where
production of secondaries (e.g., bremsstrahlung) may be important
because there is no secondary production by electrons whose histories
are terminated in this fashion. It is important to note that the
contribution to leakage from the zone (or subzone) of any untrapped
electrons with energies above the zone-dependent cutoff is much more
rigorous than that of untrapped electrons with energies below the
zone-dependent cutoff because a much cruder form of transport is
employed for the latter. In Version 3.0 the decision as whether an
electron is trapped or untrapped is based on subzone boundaries in the
TIGER codes, axial and radial subzone boundaries in the CYLTRAN codes,
and code-zone (regions separated by an OR operator in the input-zone
definitions and input zones defined without the OR operator; see Sec.
E.1.2) boundaries in the ACCEPT codes.

99

H.2 Scalinz of Bremsstrahlung Production

The user may artificially increase the bremsstrahlung production to
improve the statistical accuracy of bremsstrahlung output without
increasing the number of primary electron histories, which would be much
more time consuming. The option is activated via the SCALE-BREMS
keyword. The cross sections of the material chosen by the user are
scaled so that an electron slowing down from the maximum source energy
to the global electron cutoff energy in this material will, on the
average, generate a number of bremsstrahlung photons equal to the first
parameter associated with this keyword. The resulting scale factor is
used to scale the bremsstrahlung cross sections for all other materials
in the problem. The material selected as the basis for scaling (the
second parameter associated with the SCALE-BREMS keyword) should be that
material which one would expect to dominate the bremsstrahlung
production. Simultaneous scaling of the cross section for electron
impact ionization probability is also desirable (see Sec. H.3).

This option is used primarily for the prediction of external
bremsstrahlung production (e.g., prediction of the environment of an x-
ray source). Consequently, a Russian Roulette procedure is employed to
reduce the number of secondary electrons generated from the interaction
of this artificially high bremsstrahlung population to the naturally
occurring number. Although this procedure is very efficient for
predicting external bremsstrahlung, it can lead to statistically poor
results for the profiles of energy and charge deposition, and electron
flux in regions of the problem where these profiles are determined by
the transport and secondary electron production of the bremsstrahlung
radiation. In such cases, the ELECTRON-RR secondary keyword should be
used to ensure that a sufficiently large fraction of the secondary
electrons are followed.

H.3 Scaling the Probability for Electron ImDaCt Ionization

An option similar to that of the previous subsection permits the
user to artificially increase characteristic x-ray production by scaling
the cross section for electron impact ionization. This option is
activated via the SCALE-IMPACT keyword. The cross section for electron
impact ionization of each material is scaled so that an electron slowing
down in that material from the maximum source energy to the global
electron cutoff energy will, on the average, generate a number of
ionization events equal to the value of the parameter associated with
this keyword.

H.4 Forced Photon Collisions (TIGER and CYLTRAN Codes)

In the TIGER and CYLTRAN codes, an option is available for forcing
a selected fraction of photons entering a given zone or leaving a
collision site within that zone to interact in that zone. The option is
activated via input data for the GEOMETRY keyword. The option is useful
for forcing photons to interact in certain regions where their natural
interaction probability is so small as to make it difficult to obtain

100

statistically significant results. The values chosen for the forcing
fractions must be > 0.0 and < 1.0, and are specified by the appropriate
parameter for the given zone as described under the GEOMETRY keyword.
Care must be taken not to overbias. A forcing fraction of 1.0 will
prevent any photons from escaping from the given zone and will prevent
them from making contributions elsewhere in the results of the
calculation (e.g. , prevent them from contributing to the escape
fractions).

H,5 Photon Path Length Stretching (ACCEPT Codes)

With the ACCEPT codes, the user has the ability to decrease (or
increase) the photon interaction probability in a given input zone
relative to its natural value by a different method from that used in
the TIGER and CYLTRAN codes. The interaction probability is changed via
the appropriate stretching (or shortening) parameter under the GEOMETRY
keyword. The photon cross section for that input zone will be scaled by
the reciprocal of that parameter. Although the parameter may be any
real positive number between zero and one for shortening or between one
and infinity for stretching, care must again be taken not to overbias.

H.6 Zone-Dependent Electron Cutoff EnerQies

The user has the option of varying the electron cutoff energy from
zone to zone so long as the zone-dependent cutoffs are greater than or
equal to the global electron cutoff energy. The option is activated via
the appropriate parameter associated with the GEOMETRY keyword. When
the energy of an electron in a given zone falls below the cutoff for
that zone, a check is first made to see if it is trapped in the sense
described under keyword TRAP-ELECTRONS. If SO, the history is
terminated via on-the-spot deposition of charge and energy. Otherwise,
except for the M codes, a final calculation of non-local energy and
charge deposition is made based on the residual range of the electron
(Subroutine KICK). For either of the M codes, a relatively low electron
cutoff energy should be used because the history is always terminated
via on-the-spot deposition of the charge and remaining energy of the
electron. It is important to remember that there is no production of
secondary particles by electrons below the zone-dependent cutoff, nor is
there any contribution to electron flux and electron escape by such
electrons.

This option has proven useful in problems that involve the
generation of bremsstrahlung in one zone(s) and deposition caused by
that bremsstrahlung in another zone(s). A relatively high cutoff may be

used in the converter zone(s) since low-energy electrons are relatively
inefficient for producing bremsstrahlung. On the other hand, in the
zone(s) where deposition is dominated by bremsstrahlung transport, the
user may be interested in the details of the deposition from the low-
energy bremsstrahlung-produced secondaries (e.g. , interface effects, in
which case he or she may not want to kill those electrons with Russian
Roulette), or he or she may not want electron transport in those zones
at all (bulk deposition).

101

H.7 Next-Event Estimator for Photon Escape

For a geometry that is highly absorbent to secondary photons
generated in the transport process, scoring as leakage photons only
those secondary photons that actually escape the geometry while being
tracked can be quite inefficient (the contribution to total leakage from
uncollided source photons is not scored because this contribution can
usually be calculated analytically and might otherwise dominate the
total leakage to the extent that the scattered contribution cannot be
determined). This was remedied in earlier versions of the TIGER and
CYLTRAN codes by using instead the next-event estimator for photon
leakage. With this estimator, a score is obtained each time a uhoton
emerges from a collision. The score is simply the emergent photon
weight times the probability of escape without further interaction.

In Version 3.0, the next-event estimator for photon leakage in the
TIGER and CYLTRAN codes has been extended to the ACCEPT codes. This
option is now automatically activated as a method of variance reduction
for differential leakage when the PHOTON-ESCAPE keyword is used.
Otherwise, the option is not used for the default prediction of integral
leakage unless explicitly activated via the keyword, NEXT-EVENT-ESCAPE.

102

Appendix I: Plotting Capability

The user will find a plotting capability to be a useful tool in
applications of the ACCEPT and CYLTRAN codes, and especially so when the
MCODES option has been selected. Once a particular plot package has
been implemented, the plots are easily obtained by using the
*DEFINE,pLOTS instruction described in Sec. 2.3.1 and the PLOTS keyword
described in Sec. 2.3.2.

1.1 CYLTRAN and ACCEPT Code Geometries

When calculating radiation transport in complex 3-D geometries, it
is important to have one or more independent methods for verifying the
accuracy of the geometry input data. Visual checking of input data can
be very tedious and errors are likely to be overlooked. Since automatic
internal volume calculations are not possible with combinatorial
geometry, volume checks cannot be used to verify the accuracy of the
geometry input for the ACCEPT codes as they can, for example, for the
CYLTRAN codes. ITS includes the logic for obtaining plots of the
geometry of the ACCEPT codes. The plots will quickly reveal any
significant errors in the numerical input.

Briefly stated, these routines allow the user to obtain an
arbitrary number of parallel projections of his body specification along
arbitrary viewing directions. The final body, which usually encloses
the rest of the geometry and defines the escape zone (see Appendix E),
is not plotted. The user inputs the two spherical polar angles defining
the direction from which the geometry is to be observed. The code then
internally calculates a third rotation about k’ ‘ (the positive z
direction after two rotations defined by the two input angles) such that

j “’.(jxk’’)=O

and

Consequently, the original y axis will project onto the y’” axis with
the same sense; that is, a vector pointing in the original y direction
will be pointing in the y’” direction in the x“’-y’” plots. The

resulting projection operator is represented by a rotation matrix that
is the product of three rotations. These rotations are quite similar to
the Eulerian angles that are often used to describe the kinematics of
rigid body motion.40 Version 3.0 of ITS includes logic for plotting
seven of the eight active primitive body types of the ACCEPT codes.

In the case of the CYLTRAN codes, one simply obtains a p-z plot of
all or part of the problem geometry.

103

1.2 Electron and Positron Trajectories (M Codesl

The M codes are most often applied to problems in which macroscopic
field transport competes strongly with collisional transport. Indeed,

electric fields are restricted to void regions. It is generally very
helpful for the user to be able to view the effects of the nonstochastic
macroscopic field transport. ITS includes the necessary logic for
plotting a sample of electron and positron trajectories in regions of
non-zero macroscopic fields. In the case of CYLTRANM, the trajectories
are plotted on a p-z plot of all or part of the problem geometry. In
the case of ACCEPTM, the trajectories appear on the final parallel
projection as discussed in the previous subsection.

1.3 Implementation of Plot Packazes

Version 3.0 of ITS is being distributed as a plot-capable but not a
plot-ready program because no universal, machine-portable X-Y plotting
package could be identified to include with this version. However, any
installation that possesses an X-Y plot package can easily interface
that package for use with the ACCEPT and CYLTRAN codes. We suggest
using the smallest and most basic plot package in order to maximize the
memory available for complex transport calculations. This is especially
important when running on machines with limited fast memory such as the
CDC CYBER 76. At Sandia we are using a small, local plot package called
WEASEL.26

The plotting functions in ITS have been partitioned into three
categories : 1) device initiation, 2) axes drawing and curve plotting,
and 3) device termination. These three functions correspond to three
separate subroutines in ITS: 1) PLTBEG, 2) PLTDAT, and 3) PLTEND,
respectively. The UPEML update program can be used to replace the
existing calls to Sandia WEASEL routines in these subroutines with calls
to the desired plot package. Then ITS can be compiled and linked with
the plot library according to local conventions; the result is a plot-
enabled version of ITS.

We conclude this section with a brief description of the function
of each of these three subroutines. Subroutine PLTBEG simply calls the
WEASEL routine WSTART. WSTART initializes the plot package and opens
the appropriate output file. Subroutine PLTEND performs the opposite
function. It calls WEND whose function is to terminate the plot package
and close the output file. The remaining plot routine calls are
contained in subroutines PLTDAT and PLOTA. Subroutine PLTDAT controls
the drawing of the plot axes, plot title, and X-Y data. Furthermore,
PLTDAT controls the creation of new plot frames through the calls to
WFLUSH and WNEWPG. The meanings of the variables used in this routine
are explained in the subroutine banner. Once again, one simply replaces
a routine like WXAXIS with the corresponding routine that draws and
labels an X axis, or replaces WDWW with a call to a routine that plots
the X-Y data on a predefine grid to generate a locally plot-enabled
version of ITS. Additional lo-gic was ‘added to
PLOTA for the purpose of drawin~
axes in the chosen rotated frame.
to WTEXT are needed to label these

the orientation
The additional
axes.

104

the end of Subroutine
of the original X-Y-Z
WEASEL-specific calls

Appendix J: Statistics

A significant advantage of the ITS system is the computation of
statistical uncertainties for virtually all output quantities. Under
the default option, the total number of histories of primary particles
are run in 10 equal batches. The output routine is called at the end of
each batch. Immediately before each write statement, a call is made to
Subroutine STATS. This routine (a) recalls the statistical variables
from the previous batch corresponding to the output quantities about to
be written, (b) computes the estimate of the statistical standard error
(in percent) based on the number of batches that have been run, and c)
saves the statistical data from the current batch so that it will be
available for the next batch. Unless the keyword PRINT-ALL is used,
only the final results based on the total number of completed batches
are printed out. The user may specify a number of batches other than 10
by using the keyword BATCHES as described in Sec. 2.3.2.

A further benefit from this batch processing is a feature that
prevents the user from exceeding his time limit. Before beginning a new
batch, the remaining portion of the time requested for the job is
obtained by a call to Subroutine TIMER and compared with an estimate of
the time per batch. If this estimate is larger than the time remaining,
results based on the number of completed batches -- including estimates
of the statistical errors -- are printed out and the run is terminated.

Under normal operation virtually every Monte Carlo output quantity
is followed by a one- or two-digit integer from O through 99 (estimates
even greater than 99 are shown as 99) that is the best estimate of the
statistical standard error expressed as a percent of that output
quantity:

<x:> - <xN>z

(S.E.)N = 100
I<X/l N-1

where

1
<x>=—

NN

and

l/2

The Xi’s are the values of the quantity obtained from each batch, and N
is the total number of completed batches (default 10).

105

Should the more sophisticated user wish to add additional tallies
to any of the Monte Carlo member codes, he will find subroutine STATS to
be a useful utility. STATS provides estimated statistical uncertainties
for all output quantities. It has three formal parameters. The first
is a temporary array containing the current batch values for the
quantities for which statistical estimates are desired when the routine
is called. The routine returns the cumulative batch averages in this
same array for printing. The second parameter is an array that will
return the statistical estimates for printing. The third parameter is
the number of batch values to be processed with this call (the length of
the first two parameter arrays).

106

Appendix K: Notes on Job Control Language - (JCL)

The one site-specific aspect of running the ITS package at a given
installation is the creation of appropriate Job Control Language (JCL)
decks for a particular computer and operating system. We have had local
experience running Version 3.0 of ITS under VAX/VMS, CRAY/UNICOS,
CRAY/CTSS, workstations, and specialized mainframes. We have had local
experience running Version 1.0 of ITS under VAX/VMS, CRAY/COS, and
CDC/SCOPE. We have also had limited testing of Version 1.0 on an IBM/OS
mainframe. However, we cannot hope to give JCL examples for all
machines and all operating system since, for example, the JCL for
CRAY/CTSS will be different from that for CRAY/COS. Therefore, we give
generic examples for the JCL with special emphasis on which user files
correspond to which Fortran unit numbers and Fortran logical file names
in assignment statements. In section K.1 we give generic examples for
creation runs, while in section K.2 we give examples for correction
runs . Most modern operating systems should facilitate the easy
translation of these generic steps into an efficient site-specific JCL.
Our limited experience with the IBM/OS-type JCL, however, has indicated
that it could present a significant stumbling block to the rapid
implementation of the ITS package that we have envisioned for its
machine-portable structure. Therefore, as a guideline for IBM users, in
section K.3 we give some specific examples of IBM JCLS.

K,l Generic Creation Runs

In this section we assume that the user has compiled and
link/loaded the appropriate machine-dependent version of the UPEML
utility and has saved it as an executable file. We also assume that the
source files for XGEN and ITS have been copied from the magnetic tape
into appropriately named permanent disk files.

Execute: Execute UPEML with command line input “I,N,L”. (Note that
the command line input is read from the default system input
device, Fortran unit 5.)

Input: 1) The source file (XGEN or ITS) should be equivalence to
the file “srcdk” (alternatively, the user could avoid
such equivalences by, e.g., replacing “I,N,L” of the
command line with “I=XGEN,N=XGEN.PL,L=XGEN.LST” ; see Sec.
3).

Work Files: None

output : 1) A Fortran 77 direct access file that contains the new
program library (NEWPL) created by this run. This file
is written to the file “newpl” and should be
appropriately renamed and permanently stored for
subsequent use in all correction runs.

107

2) A listing of all the source card images that have been
placed in the NEWPL along with the deckname and
associated sequence numbers that have been assigned to
each line. This listing is written to the file “listfl”.

K.2 Generic Correction Runs

In this section we assume that the user has successfully created
NEWPLS for both XGEN and ITS as described in the previous section and
that these program libraries have been appropriately named and
permanently stored for use in all correction runs. These program
libraries will henceforth be referred to as old program libraries
(OLDPLS). We also assume that the user has read the cross-section data
file XDATA from magnetic tape and permanently stored it on disk. The
generic-correction-run JCL that we will describe in this section will
be appropriate for the combined runs of both XGEN and ITS in a single
pass. AS such, it will be compatible with the sample input found in
Sees. B.1 through B.8 of Appendix B. The JCLS that we will describe
would directly precede those input decks. We will clarify the relation
of the input found in Appendix B to the execution steps in the following
description.

STEP #1 - Make a compile file for XGEN.

Execute: Execute UPEML with command line input “F,P”. (Note that the
command line input is read from the default system input
device, Fortran unit 5.)

Input: 1) The previously created and stored OLDPL for XGEN should
be equivalence to the file “oldpl” (or user could
specify, e.g. , “P=XGEN.PL”) .

2) Additional in-line input, as shown in Appendix B, is read
from the default system input device, Fortran unit 5.
(Note that if the I parameter is specified on the command
1ine, this input will be read from the file “srcdk”.)
This information includes the UPEML command line, the
machine and code definition information as described in
Table III, and any additional user modifications to the
code as described in Sec. 3.3. This information is
contained between the first and second (eor)s in the
examples of Appendix B.

Working Files: UPEML copies the OLDPL (the file “oldpl”) information to
a temporary working file, Fortran unit 15. This file is
also direct access.

output : 1) A compile file for XGEN is created as the file “cmpfil”.
2) If an “L” (comma delimited) is added to the UPEML

“command” 1ine, a listing file is also created on the
file “listfl”. This file contains a summary of the
correction run operations.

108

STEP #2 - Compile and link/load program XGEN.

Execute: Execute the system Fortran compiler and link loader to
create an executable image of program XGEN.

Input: 1) The previously created Fortran compile file (written to
the file “cmpfil”) is used as input to the Fortran
compiler.

Working Files: The Fortran compiler will create an object file that is

output :

STEP #3
sections

Execute:

Input:

then passed to the system link/loader. -

1) An executable image of program XGEN is created for use in
the next execution step.

2) Any Fortran or link/loader information requested by the
user is written to the output file.

Execute program XGEN and create electron/photon cross

Execute the executable image of program XGEN to create
electron and photon cross sections for use by the ITS Monte
Carlo transport code.

1) The previously created image of program XGEN is executed.
2) The stored cross-section data file XDATA should be

assigned to Fortran unit 9.
3) Additional in-line input, as shown in Appendix B, is read

from the default system input device, Fortran unit 5.
This is the problem-dependent input for XGEN and is
contained between the second and third (eor)s in the
examples of Appendix B.

Working Files: If the PRINT-ALL option is not requested as an option in
the XGEN input cards then XGEN discards the detailed
cross-section information written to Fortran unit 7.

output : 1) An electron/photon cross-section file for input to ITS is
written to Fortran unit 11.

2) A summary of the XGEN output is written to the default
system output device, Fortran unit 6.

STEP #4 - Make a compile file for ITS.

Execute: Execute UPEML with command line input “F,P”. (Note that the
command line input is read from the default system input
device, Fortran unit 5.)

Input: 1) The previously created and stored OLDPL for ITS should be
equivalence to the file “oldpl” (or user could specify,

e.13.9 “P=ITS.PL”).

109

2) Additional in-line input, as shown in Appendix B, is read
from the default system input device, Fortran unit 5.
(Note that if the I parameter is specified on the command
line, this input will be read from the file “srcdk”.)
This information includes the UPEML command line, the
machine and code definition information as described in
Table V, and any additional user modifications to the
code as described in Sec. 3.3. This information is
contained between the third and fourth {eor)s in the
examples in Appendix B.

Working Files: UPEML copies the OLDPL (the file “oldpl”) information to
a temporary working file, Fortran unit 15. This file is
also direct access.

output : 1) A compile file for ITS is created as the file “cmpfil”.

2) If an “L” (comma delimited) is added to the UPEML command
line , a listing file is also created as the file
“listfl”. This file contains a summary of the correction
run operations.

STEP #5 - Compile and link/load program ITS.

Execute: Execute the system Fortran compiler and link loader to
create an executable image of program ITS.

Input: 1) The previously created Fortran compile file (written as
the file “cmpfil”) is used as input to the Fortran
compiler.

Working Files: The Fortran compiler will create an object file that is
then passed to the system link/loader.

output : 1) An executable image of program ITS is created for use in
the next execution step.

2) Any Fortran or link/loader information requested by the
user will be written to the output file.

STEP #6 - Execute program ITS and perform the transport calculation.

Execute: Execute the executable image of program ITS to calculate the
transport of electrons and photons through the geometry of
interest.

Input: 1) The previously created image of program ITS is executed.
2) The previously created cross-section file should be

assigned for input as Fortran unit 11.
3) Additional in-line input, as shown in Appendix B, is read

from the default system input device, Fortran unit 5.
This is the problem-dependent input for ITS and follows
the fourth (eor) in the examples in Appendix B.

110

4) In the case of a restart, the data contained in the dump
file from a previous run is read from Fortran unit 14,

Working Files: If the PRINT-ALL option is not requested as an option in
the ITS input cards, ITS discards the intermediate batch
output to Fortran unit 12.

output : 1) The results of the transport calculation are written to
the default system output device, Fortran unit 6.

2) If the DUMP keyword is specified in the user input, a
restart dump file will be written to Fortran unit 10.

K.3 Examples of IBM JCL

As discussed previously, we feel that information required by the
IBM batch operating system is sufficiently detailed to warrant special
consideration. We therefore present the following examples to guide the
user in creating his own JCLS. We do not guarantee that these JCLS are
completely site-portable; rather, they are simply guides. Note that for
simplicity we have shown separate JCLS for each individual code step.
We have not duplicated creation, correction, and compilation JCLS for
XGEN since they are identical (except for file names) to those for ITS.

Example of creation run for ITS:

//ZWJHBI1 JOB (SB012,BF3,15),TEST.RUN,TIME=(5 ,30),CLASS=0
/*JOBpARM Q=F
//* DELETES OLD OUTpUT FILE IF IT EXISTS *

//FINDDSN EXEC SRCHDS,DSN=’ITS.OPL’
//KILLFILE EXEC IEFBR14,COND=(4,LT,FINDDSN.SEARCH)
//DELETE DD DSN=ITS.OPL,DISP=(OLD,DELETE)
//* EXECUTES UpDATE E~~TOR - UpEML*

//RUNJOB EXEC GOSTEP,REGION=1O24K,LIB=’UPEML.LIB.LOAD’ ,PROG=MAIN,

// COND=EVEN
//FT15FO01 DD DSN=ITS.OPL,DISP=(NEW,CATLG,DELETE) ,

// UNIT=DISK,DCB=(RECFM=F ,BLKSIZE=1024) ,VOL=SER=SACC09 ,
SPACE-(1024,5OOO)

~/FT17F001 DD DSN=ITS.SRC(ITS),DISP=SHR
//DATA5 DD *
I,N,L
//NOTIFY EXEC NOTIFYTS

Example of Correction Run for ACCEPT code from ITS package:

//ZWJHB12 JOB (SBO12,BF3,15),TEST.RUN,TIME=(1O ,30),CJASS=0
/*JOBpARM Q=F
//* DELETES OLD OUTpUT FILE IF IT EXISTS *

//FINDDSN EXEC SRCHDS,DSN=’ ITS.COMP’
//KILLFILE EXEC IEFBR14,COND=(4,LT,FINDDSN.SEARCH)
//DELETE DD DSN=ITS .COMP,DISP=(OLD,DELETE)
//* EXECUTES UpDATE ~~TOR - UpEML*

111

//RUNJOB EXEC GOSTEP,REGION=1O24K,LIB=’UPEML.LIB.LOAD’ ,PROG-MAIN,

// COND=EVEN
//FT13F001 DD DSN=ITS .OPL,DISP=SHR
//FT20F001 DD DSN=ITS.COMP,DISP=(NEW,CATLG,DELETE) ,

// DCB=(RECFM=FB ,LRECL=90,BIJCSIZE=2700),UNIT=DISK,

// SPACE=(TRK, (1O,1O)),VOL=SER=SACCO4
//FT15FO01 DD DSN=&&TEMP,UNIT=SYSDA,DISP=(NEW,PASS ,DELETE),

// DCB=(RECFM=F, BLKSIZE=1024) ,SPACE=(1024,5OOO)
//DATA5 DD *

I,F,P
*DEFINE IBM
*DEFINE ACCEpT

//NOTIFl! EXEC NOTIFYTS

Note that the correction run JCL creates a compile file that has 90
character records to accommodate the deck and sequence number
information that UPEML appends to each line. However, our experience
has indicated that the IBM Fortran compiler insists on 80 character
records. Therefore, we needed to truncate the 90 character ITS.COMP
file to an 80 character file that we named ITS.FORT for the next job
step.

Example of compilation and linking of the ACCEPT code of the ITS system:
//ZWJHBCMI JOB (SB012,BF3,5),TEST.RUN,TIME=(1 ,30),CLASS=0,

// MSGCLASS=A,MSGLEVEL=(l,l),NOTIFY=ZWJHB
/*JOBpARM Q=F,LINES=1OO
//COMPILE EXEC FORTVCL, FVPOPT=2, FVPOLST=’NOTF,NOLIST’ ,

// FVLNSPC=’3200, (200,100) ’,REGION=4O96K,

// PARM.LKED=’LET ,MAP,XREF,NCAL’
//FORT.SYSIN DD DSN=ITS .FORT,DISP=SHR
//LKED.SYSLIB DD DSN=SYS1.VFORTLIB,DISP=SHR

// DD DSN=SYS2. 1MSLS,DISP=SHR
//LKED.SYSLMOD DD DSN=ITS.LIB.LOAD(ACCEXE),DISP=SHR,LABEL=(,,,OUT)
//NOTIFY EXEC NOTIFYTS

Example of running the cross-section generation program XGEN:

//ZWJHBX JOB (SB012,BF3, 15),TEST.RUN,TIME=(5 ,30),CLASS=0,

// MSGCLASS=A,MSGLEVEL=(l,l),NOTIFY=ZWJHB
/*JOBpARM LINES=100,Q=F

//FINDDSN EXEC SRCHDS,DSN=’XSECS.DATA’
//* CREATE AND ALLOCATE SPACE FOR CROSS-SECTION FILE
//CREATE EXEC IEFBR14, COND=(4,GT,FINDDSN. SEARCH)
//ALLOCATE DD DSN=XSECS.DATA,UNIT=DISK,DISP=(NEW, CATLG),

// DCB=(RECFM=FB ,LRECL=120,BLKSIZE=2400) ,

// VOL=SER=SACC08 ,SPACE=(TRK, (5,5))
//XGENEXE EXEC GOSTEP,REGION=2048K,LIB=’XGEN.LIB.LOAD’ ,

// PROG=XGEN,COND=EVEN
//FT07FO01 DD DUMMY DETAILED CROSS-SECTION INFO
//FT09F001 DD DSN=XDATA.DATA(XDATA),DISP=SHR, LABEL=(, ,,IN)

112

//FTllFOO1 DD DSN=XSECS.DATA,DISP=SHR,LABEL-(,,,OUT)
//DATA5 DD *

MATERIAL TA
MATERIAL AL
TITLE
1.0 MEV CROSS SECTIONS FOR TA AND AL

ENERGY 1.0
/*

//NOTIFY EXEC NOTIFYTS

Example of

//ZWJHBITS

//
/*JOBp~

//ITSEXE

//
//FT07FO01
/\FTo6Fool
//FTllFOO1
//FT12Fool
//GO.DATA5
ECHO 1
TITLE
...1.0 MEV

executing the ACCEPT member code of ITS:

JOB (SB012,BF3,20), ’ACCEPT RUN’,CLASS=0,TIME=(2,00),
MSGCLASS=A,MSGLEVEL=(l,l),NOTIFY=ZWJHB
RESTART=Y,Q=F ,LINES=1OO
EXEC GOSTEP,REGION=2048K,LIB=’ ITS.LIB.LOAD’,
PROG=ACCEXE
DD DUMMY
DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137 ,BLKSIZE=137)
DD DSN=XSECS .DATA,DISP=SHR,LABEL=(,,,IN)
DD DUMMY
DD *

TA/AL TEST PROBLEM
************************* GEOMETRY hkkkkkhhhkhkkhkhhkkkkkhhkhkkhhhh

GEOMETRY
RCC 0.00 0.00 0.00 0.00 0.00 -0.007

10.0
RCC 0.00 0.00 0.00 0.00 0.00 0.10

10.0
RCC 0.00 0.00 0.10 0.00 0.00 0.05

10.0
SPH 0.00 0.00 0.00 12.0
END
ZSUB1 +1
ZSUB2 +3
23 +2
24 +4 -1 -2 -3

END
* MATERIAL CUTOFF STRETCHING
1
2
0
0

113

************************* SOURCE ********************************

ELECTRONS
ENERGY 1.0
CUTOFFS 0.05 0.001
POSITION 0.0 0.0 -0.007

WDIUS 2.50
* DEFAULT DIRECTION
DIRECTION 0.0 0.0
************************* OUTpUT OpTIONS ************************

ELECTRON-ESCAPE
NBINE 2
NBINT 4

PHOTON-ESCAPE
NBINE 2
NBINT 4

ELECTRON-FLUX 1 2
NBINE 2

PHOTON-FLUX 1 2
NBINE 2

************************* OTHER OpTIONS ***********************

HISTORIES 1000
BATCHES 10
*BATCHES 20
* ... X-RAY PRODUCTION SCALING
SCALE-BREMS 500.
* PLOTS 3
* -15.0 15.0 -15.0 15.0 180. 90.
* -15.0 15.0 -15.0 15.0 0.0 0.0
* -15.0 15.0 -15.0 15.0 180. 30.
/*

//MESSAGE EXEC NOTIFYTS,ID=ZWJHB

114

Appendix L: Automatic Subzoning

Automatic subzoning refers to that feature of the ITS codes whereby
the user may direct a particular member code to internally subdivide a
given input zone into subzones for the purpose of obtaining the spatial
variation of energy and charge deposition, electron flux, and photon
flux within the given input zone. This powerful feature has the
potential for substantially reducing (a) user time for generating the
input file, (b) machine memory requirements, and (c) machine CPU time.
Without this feature, the user would have to describe each subzone as a
separate input zone. For example, a 10x1OX1O subzoning of a rectangular
parallelepipeds with the ACCEPT codes would require at least 1000 lines
of input without automatic subzoning. Because the subzones are defined
in terms of equal increments of the intrinsic coordinates of the input
zone, there is no need for explicit storage of the boundaries of
subzones, and very little memory is required to locate the subzone
containing an arbitrary point within the input zone. Finally, because
the internal subzone boundaries are not material discontinuities, they
can be ignored by the CPU-intensive tracking logic.

Automatic subzoning and related coding has grown with the
development of the ITS system, and is still not as complete as we would
1ike. In the TIGER codes, it was already virtually complete in Version
1.0. In that version of the CYLTRAN codes, there was some capability
for pseudo-subzoning a solid annulus input zone in the radial and axial
directions. However, the only reduction was in the sense of Item (a)
above . Once these “subzones” were generated internally, they were
treated like any other input zone. Their boundary information was
permanently stored, and particles were tracked through them just like
any other input zone. In Version 1.0 there was no subzoning of any kind
in the ACCEPT codes. In Version 2.0, we implemented full automatic
subzonin~ in the sense of Items (a). (b), and (c) above in the ACCEPT
codes for input zones consisting of a single RCC or RPP body. In the
latter we allowed three-dimensional subzoning, and in the former we
allowed radial and axial subzoning. No additional automatic subzoning
was implemented in Version 2.0 of CYLTRAN. In Version 3.0, we have
substantially extended this feature. We have implemented full automatic
subzoning in the CYLTRAN codes, extending it to three dimensions with
the addition of azimuthal subzoning. Moreover, the ACCEPT codes now
feature the full three-dimensional subzoning of input zones consisting
of a single body of type RCC, RPP, BOX, or SPH.

There are, however, some aspects of the coding of ITS that do not
yet take full advantage of or are not completely consistent with the
philosophy of automatic subzoning. We discuss them here in terms of
three basic questions that are frequently asked as a particle trajectory
evolves within the problem geometry:

(1) Point location: In what input zone (or subzone) does a given
point of the trajectory lie?

115

(2) Tracking: For a particle at a given point in a given input zone
(or subzone) with a given direction, how far will it go before
reaching the boundary of the given input zone (or subzone) if it
continues moving in the given direction?

(3) Trapping test (electrons only): For an electron at a given point
in a given input zone (or subzone), what is the minimum distance
to the surface of that input zone (or subzone)?

In principle we would like the code to respond to such queries on a
subzone rather than an input zone basis. In practice, it is felt that
the overhead for doing the former may be so excessive as to negate the
above mentioned advantages of automatic subzoning. In Version 3.0 we
have taken a middle of the road approach based on our judgement of what
is the best overall choice and what is feasible at this time.

Currently, the presence or absence of subzone-based testing for
electron trapping (see Appendix H.1) as in Item (3) depends on the
particular code being used. In the TIGER codes, it is fully subzone
based. In the CYLTRAN codes, it is subzone based for axial and radial
subzones, but not for azimuthal subzones. In the ACCEPT codes, it is
based only on the input zones. The potential problem with testing only
on input zone boundaries is that the energy and charge of an electron
found to be so trapped is deposited on the spot, even though its
residual range may still be substantially greater than the dimensions of
the subzones within that input zone. For now we recommend one of two
approaches for such cases. Users may simply not use the TRAP-ELECTRONS
option and choose a zone-dependent electron cutoff energy (see GEOMETRY
keyword) for the input zone to be subzoned such that the residual range
at this cutoff is of the order of or less than the minimum dimension of
a subzone. Or they may use the TRAP-ELECTRONS option and explicitly
define as input zones what would otherwise have been subzones. We hope
to make all testing for trapped electrons subzoned based in future
versions of ITS, but this must be done without adding an excessive
amount of overhead from the required analytic geometry calculations.

The remaining issues have to do with the actual scoring of certain
spatially-dependent output quantities: energy deposition, electron flux,
and photon flux. All of the scoring is subzone based, but there are
alternative variations to what we use in Version 3.0 whose
variance-reduction consequences have not been fully explored.

Energy deposition and scoring of volume-averaged electron flux are
coupled. Both quantities are scored at the same point, as in Item (1)
above, which is randomly selected along an electron random-walk substep,
or partial substep if the substep encounters a material discontinuity.
Because there is one score per substep, the use of automatic subzoning
will not lead to variance reduction by increasing the number of scores
per electron. Rather, the variance reduction from automatic subzoning
is achieved because the time required to track an electron is reduced
when subzone boundaries can be ignored.

116

There is, however, an alternative method of scoring these
quantities, not vet implemented in ITS, that could potentially lead to
further variance reduction in applications where the random walk
substeps are greater than the subzone dimensions. We refer to this
method as track-length apportioning. The segments of the substep within
each subzone must first be determined. These segments times the
electron weight are then scored as volume-averaged fluxes in the
appropriate subzones. Similarly, the segments, as fractions of the
total substep, are used to apportion the substep energy deposition among
the subzones. Multiple scoring of these quantities per substep may lead
to significant variance reduction. The caveat to this approach is that
it requires what is equivalent to tracking, as in Item (2) above, among
the subzones. It was the avoidance of tracking among subzone boundaries
that was primarily responsible for the variance reduction achieved by
automatic subzoning. Nevertheless, the more sophisticated user may use
the UPEML processor to implement this method. This is rather easily
done for the TIGER codes (see discussion of photon flux below), but
becomes progressively more difficult for the CYLTRAN and ACCEPT codes.

In the CYLTRAN and ACCEPT codes, scoring of volume-averaged photon
flux is done in a fashion similar to that of electron flux. Here,
however, instead of obtaining one score per substep, there is one score
per free-flight photon trajectory segment between collisions or inrmt-
zone boundaries. Again, scoring is at a point, as in Item (1) above,
that is randomly sampled along the free-flight segment. Automatic
subzoning does not increase the number of scores, and variance
reductions again derives from the avoidance of tracking among the
subzone boundaries. However, when the dimensions of the subzones are
much smaller than the average free-flight photon trajectory segments,
there could actually be a variance increase relative to the variance
that would have been obtained had each subzone been defined explicitly
as an input zone, since the number of scores is greatly reduced in the
former case. Whether there is an overall variance increase or reduction
is, of course, very problem dependent.

Because photon mean free paths tend to be much larger that electron
random-walk substeps, and because one-dimensional tracking is relatively
simple, it was decided to apportion the the free-flight photon
trajectory segments among the subzones in the TIGER codes when scoring
photon flux. Thus , significant additional variance reduction, over and
above that from automatic subzoning alone, may accrue to the estimation
of photon fluxes with the TIGER codes, unless subzone boundaries tend to
be much larger than photon mean free paths. Using the UPEML processor,
this logic may easily be extended to the calculation of electron flux in
the TIGER codes.

117

Appendix M: Cross-Section Improvements in Version 3.0

M.1 Bremsstrahlunz Cross Sections

In Version 3.0, an improved, comprehensive database of electron-
bremsstrahlung production cross sections, differential in emitted photon
energy, has been incorporated into the cross-section generator. The
development of these data, which covers electrons with kinetic energies
from 1 keV to 10 GeV incident on neutral atoms with atomic numbers Z - 1
to 100, is discussed in rather complete detail by Seltzer and
Berger41942 and by Seltzer.43 The following is a brief description of
the data base.

The cross sections were prepared by combining various theoretical
results that go beyond the Bethe-Heitler, Born-approximation results
largely relied on in the cross-section package of Version 2.1. For
bremsstrahlung in the coulomb field of the atomic nucleus, the new cross
sections are based on (a) the results from numerical phase-shift
calculations for a screened coulomb potential by Pratt et al.44 at
energies below 2 MeV and (b) an analytical high-energy theory derived
with coulomb wave functions of Davies et al.45 and 01sen46 at energies
above 50 MeV, supplemented by the Elwert coulomb correction factor47 and
the theory of the high-frequency limit given by Jabbur and Pratt.48 In
the high-energy region, the effect of screening was included by the use
of Hartree-Fock atomic form factors from Hubbell et al.49!50

A numerical interpolation scheme, applied to suitably scaled cross
sections, was used to bridge the gap between the low-energy and
high-energy theoretical results and thus to obtain improved cross
sections in the intermediate-energy region from 2 to 50 MeV. The
accuracy of the interpolation was checked by comparing interpolated
results with those from the exploratory partial-wave numerical
calculations of Tseng and Pratt51 for 5- and l-MeV electrons in Al and
u; the comparisons, shown in Seltzer and Berger41 and Seltzer, 43

indicate very good agreement.

Bremsstrahlung in the field of the atomic electrons was calculated
according to the theory of Haug,52 combined with (a) screening
corrections evaluated on the basis of the high-energy theory of Wheeler
and Lamb53 in conjunction with the use of incoherent-scattering
functions from Hubbell et al.,49 and (b) a small coulomb correction from
Maxon and Corman.54

The data base accessed by the generator consists of the total
(electron-nucleus plus electron-electron) cross sections for 57 values
of the electron kinetic energy T extending from 1 keV to 10 GeV, for 30
values of the ratio of photon-to-electron energy k/T extending from O to
1, and for all atomic numbers Z from 1 to 100. The generator uses
cubic-spline interpolation among the data to evaluate the cross section

118

for desired T and k/T values; the output probability distributions are
now evaluated for a set of k/T values that provide for finer coverage
than in previous versions and that extend down to lower photon energies.

Also added to the data base were the scaled, integrated energy-loss
cross SeCtiOnS @rad, which were prepared by integrating over the
differential bremsstrahlung cross sections for each Z and for each of
the 57 electron kinetic energies T. These quantities are used in the
generator to evaluate the radiative stopping power. Comparisons of the
new @rad data to those obtained from the empirical -corrected

?Bethe-Heitler cross-section package (Berger and Seltzer 5) used in
Version 2.1 are given by Seltzer43 and show differences of 10-15% above
about 1 MeV, increasing to much larger factors at low energies. The new
results are essentially consistent, within less than 1% in most cases,
with those used by Berger and Seltzer56 in the preparation of ICRU
Report 37.57 The small differences are due largely to the omission in
the ICRU work of bremsstrahlung produced by the recoiling electron in
electron-electron interactions.

M.2 Electron and Positron Storming Powers

The algorithms used by Berger and Seltzer56 in ICRU Report 3757 for
the calculation of the collisional stopping power of electrons and
positrons has been incorporated into the generator. See those
references for a detailed description of the methods and data used in
the development of these procedures; the following gives only brief
highlights of the improvements.

The collisional stopping power is still calculated on the basis of
Bethe stopping-power theory. In addition to simple atomic constants and
kinematic terms, the stopping-power formula contains two non-trivial
quantities: (1) the mean excitation energy I, the key
material-dependent parameter in Bethe’s theory, and (2) the
density-effect correction, which accounts for the reduction of the
stopping power due to the polarization of the medium. Improved
knowledge of both of these quantities is used in the current methods.

A set of mean excitation energies for elemental substances with
atomic numbers Z from 1 to 100 was prepared from a critical analysis of
available experimental and theoretical information on oscillator-
strength distributions, dielectric response functions, and charged
particle stopping powers. From available data for gas, liquid, and
solid compounds, and using a built-in data base of atomic weight from
Holden,58 an algorithm was developed that goes beyond simple Bragg
additivity and takes into account, at least approximately, phase and
chemical binding effects.

The density-effect correction is calculated directly, rather than
relying on an analytical approximation of the results, according to the
dispersion model of Sternheimer,59 using atomic binding energies from
Carlson.30 Sternheimer’s dielectric model, constructed to insure
consistency with the input I-value, depends on the plasma frequency

119

obtained from the input value of the density of the medium. In our

implementation we have included refinements that treat conductors and
insulators differently. For conductors and semiconductors, the binding
energy of conduction electrons, whose number is assumed to be the number
of electrons occupying the most weakly bound shell of an isolated atom
of each constituent element that would in its pure state also be
considered a conductor or semiconductor, is set equal to zero with the
consequence that a small density-effect correction extends down to
arbitrarily low velocities. For insulators, the density-effect
correction vanishes below a cutoff velocity.

Because of the updated I-values and the improved treatment of the
density-effect correction, values of the collision stopping power can
differ by as much as a few percent from those obtained from Version 2.1.

M.3 EtIerQY -Loss Stra~jzling

The collisional energy loss of an electron for a given pathlength
is sampled in ITS from the Landau distribution.60 By making the
largely-justified assumption that the maximum energy loss can extend to
infinity, Landau obtained the energy-loss distribution in terms of a
universal function @ of a single scaled variable A . Because of this
assumption, there formally exists no finite mean for the Landau
distribution. However, a mean is implied in practice, as the sampling
is done over some range of A. Versions 1.0 and 2.0 of ITS made sole use
of B6rsch-Supan’s tabulation of the Landau distribution,61 which extends
from A = -4 to only A =100. Such a cutoff, coupled with a kinematic
cutoff used in ITS, results in a correct mean energy loss only in the
vicinity of 1.0 MeV.

This problem was recently corrected by simply imposing an upper
limit of Acut on the sampling procedure that provides for the correct
mean energy loss (see Seltzer62 for a more complete discussion,
including the relationship between A and energy loss A). To implement
this procedure, the numerical tabulation of the Landau distribution was
extended to a A-value of 5x104 by using the asymptotic formula given by
B6rsch-Supan. This extended distribution was converted into 5001 equi-
probable Landau A’s for rapid sampling, and the new algorithm was
implemented in Version 2.1 of ITS.

However, a systematic underestimation of the mean energy loss was
found in the cases of Acut > 1000. This was traced to the poor
representation of the large-~ tail provided by the 5001 equi-probable
A’s (only 5 A’s were larger than 1000). This then led to the
development of the Version-3.O algorithm in which 5001 equi-probable A’s
are used to describe the distribution only from A = -4 to 100,
accounting for 0.9896 of the total distribution, combined with direct
sampling from the large-~ tail for the remainder.

120

Blunck and Leisegang63 included the second moment in the expansion
at low energies of the energy-loss cross section used in solving
Landau’s equation. In Version 1.0 of ITS the collisional energy loss
for each major macroscopic step is sampled from the Landau/Blunck-
Leisegang distribution. However, for short pathlen ths when the Blunck-
Leisegang broadening becomes too large (see Seltzer t2), the distribution

becomes inaccurate. This occurs in ITS at lower energies in high-Z
targets. In Version 3.0, an empirical correction due to Seltzer64,
loosely based on the work of Chechin and Ermilova65, has been
implemented that results in significant improvement of code predictions
in this parameter range.

M.4 Photon Cross Sections

The latest NIST database of photon interaction cross sections,
covering energies from 1 keV to 100 GeV and all elements Z - 1 to 100,
has been incorporated into Version 3.0. This data base was constructed
through the combination of incoherent scattering cross sections from
Hubbell et al. ,49 coherent scattering cross sections from Hubbell and
@erb$,50 photoelectric absorption cross sections from Scofield,66 and
pair-production cross sections from Hubbell et al.29 In a departure
from recent tabulations of Hubbell,67~68 the photoelectric absorption
cross sections were not renormalized using the relativistic Hartree-Fock
correction factors supplied by Scofield. Recent reviews of Saloman and
Hubbel169~70 indicate that agreement with experiment is better when the
renormalization is not done.

For compounds and mixtures the interpolation-summation algorithm
from the work for Berger and Hubbel171 is used in the generator to
combine the cross sections of the constituent elements for a
comprehensive energy list including all absorption edges. The cross
sections for the different processes are converted to the appropriate
relative probabilities needed by the Monte Carlo code. In contrast to
prior versions, the total attenuation coefficients prepared for input to
Version 3.0 include coherent scattering, as this process is now included
in the photon Monte Carlo simulation.

M.5 Incoherent Photon Scattering

Although the total probability for incoherent scattering was taken
from cross sections that included binding corrections, prior to Version
3.0 the relative energy-angle distribution of scattered photons was
sampled solely from the Klein-Nishina cross section, which assumes the
target electron to be initially free and stationary. A new algorithm
was developed for the sampling of the scattered photons in Version 3.0
that includes binding effects through the use of the same incoherent-
scattering functions used by Hubbell in the preparation of the
integrated-over-angle incoherent cross section. The criteria adopted in

this development were that the methods be both formally exact and
efficient. The following is a brief discussion of these methods.

121

The integrated incoherent scattering cross section is from Hubbell
et al.49 and is obtained by integrating over a differential cross
section that is the product of the Klein-Nishina cross section and the
incoherent scattering function. At high energies the angle of the

scattered photon is sampled from the Klein-Nishina probability density
function and accepted or rejected based on the incoherent scattering
function. At low photon energies, however, this method becomes quite
inefficient, because momentum transfers are restricted to small values
where the incoherent scattering function is small. Consequently, at low
energies the procedure is reversed, and the scattering angle is sampled

according to a probability density function based on the incoherent
scattering function and accepted with a probability given by the Klein-
Nishina function. Performance tests using both methods were done as a
function of atomic number and photon energy. From the results a
switching energy, Es(keV)=3.OJZ, was found to approximately predict the
incident photon energy at which the reversal in methods results in the
fastest algorithm. It was found that for sampling from the Klein-
Nishina probability density function, the use of Kahn’s algorithm72
below about 5 MeV and Koblinger’s method73 above 5 MeV resulted in the
fastest performance.

M.6 Photon Coherent Scattering

Angular deflections associated with coherent scattering were
neglected in ITS prior to Version 3.0, using the argument that at
energies where the contribution of coherent scattering becomes largest
(of the order of only 10% of all photon interactions) the photon
deflection angles tend to be rather small. To include coherent
scattering, a sampling algorithm was developed for Version 3.0 along
lines similar to those for incoherent scattering.

The integrated coherent scattering cross section is from Hubbell et
al.49 and is obtained by integrating over a differential cross section
that is the product of the Thomson cross section and the atomic form
factor. At low energies the angle of the scattered photon is sampled
from the probability density function obtained from the Thomson cross
section and accepted or rejected based on the atomic form factor. At
high photon energies, however, this method becomes quite inefficient.
Consequently, at high energies the procedure is reversed, and the
scattering angle is sampled according to a probability density function
based on the atomic form factor and accepted with a probability given by
the Thomson cross section. The speed of the algorithm was found to be
optimized by switching between the two methods at approximately
E~(keV)=2.O ZO.2.

122

Appendix N: Random Number Generators

Monte Carlo calculations rely on the use of pseudo-random numbers
to simulate the stochastic nature of physical processes. Therefore, one
must be careful to correctly implement the available random number
generator (RNG). We believe we have done this for the machines we
support (Cray, CDC, VAX and IBM main-frames). In this appendix, we
share the issues of concern we have encountered over the years in order
to assist the user in porting ITS to unsupported platforms (e.g.,
workstations) .

N.1 Ranze

The random numbers that are generated should be uniformly
distributed between 0.0 and 1.0 exclusively. There are certain places
in the Monte Carlo software where random numbers that are identically
0.0 or 1.0 are unacceptable, resulting in fatal execution errors. While
such values are not obtained from most generators, the RNG on the VAX,
for example, can return the value of zero; in fact, it is capable of
returning two consecutive zeroes. Logic was added to the VAX coding of
the Monte Carlo program library to resample when a zero random number is
generated.

N.2 Access to the Seed

The seed of a RNG is that variable which is used to determine the
next random number in the sequence. Access to this variable is required
to assure independent random number sequences in separate runs, to have
a restart capability, and to facilitate debugging. If an error
condition is detected while the Monte Carlo is in progress, the starting
random-number seed for the current source particle (variable IRSAV in
COMMON /STTS/) is printed within the terminating subroutine, ABORTX.

If there is a problem accessing the seed (we have been told that
this is the case with the SUN-4 workstations, for example), the user can
delete references to RANINT and RANSAV from SUBROUTINE HIST at the
penalty of no longer having the above-mentioned capabilities. One
symptom of incorrect implementation may be the obtaining of “O” percent
statistical uncertainties for all quantities; this may happen if the
same seed is being used to start each batch so that the results from
each batch are identical.

N.3 Rermoducibilitv

A RNG is designed to produce the same sequence of random numbers
for the same starting seed. A problem may occur for 32-bit machines
running in double precision while using a single precision RNG. Care
must be taken to insure zero fill, instead of using extraneous,
nonreproducible bits from memory, when performing the conversion from
the single precision sample (output from the RNG) to the double
precision number to be used in the computations.

123

This problem was encountered with the VAX RNG in Version 1.0 of
ITS . While it has no effect on the accuracy of the results, for
debugging purposes it is useful to be able to precisely reproduce a
single history when needed. The extra logic in the current version of
function RAN, for the VAX only, involving the EQUIVALENCE of a double
precision variable with a two-element single precision array, was our
solution. Note that this logic takes advantage of the way the VAX
represents single and double precision numbers; it will not be the same
for all machines. For example, this scheme will not work for the IBM
RISC System/6000 series of UNIX workstations.

N.4 Cycle Lenzth

Computer generated random numbers have a finite cycle length (the
number of random numbers generated before the cycle repeats itself).
One should not run so many source particles in a given run so as to
exceed the RNG cycle length. The statistical uncertainties from such a
run can be misleadingly low. A single source particle will likely use
many random numbers. The cycle length on the VAX is about 232; however,
this will vary from one vendor to the next.

N.5 Portable Random Number Generator

We have successfully implemented a version of the machine-
independent RNG used in the MCNP code,74 which has a cycle length of
246, never generates zeroes, allows easy access to its seed, and is
already double precision. This RNG also relieves the user of concerns
about the integrity and implementation of the intrinsic RNG on his
systern. However, there is an increase in run time (about 33% on the
VAX) . This portable RNG may be invoked in place of the default RNG by
using the *DEFINE,RNG1 input directive to the UPEML processor.

124

References

1. M. J. Berger and S. M. Seltzer, “ETRAN Monte Carlo Code System for
Electron and Photon Transport Through Extended Media,” CCC-107,
Radiation Shielding Information Center, Computer Code Collection,
Oak Ridge National Laboratory, June 1968.

2. M. J. Berger, “Monte Carlo Calculation of the Penetration and

Diffusion of Fast Charged Particles,” Methods in Computational
Physics, Vol. 1, (Academic, New York 1963).

3. J. A. Halbleib and W. H. Vandevender, “EZTRAN--A User-Oriented
Version of the ETRAN-15 Electron-Photon Monte Carlo Technique,” SC-
RR-71-0598, Sandia National Laboratories, September 1971.

4. J. A. Halbleib and W. H. Vandevender, “EZTRAN 2: A User-Oriented
Version of the ETRAN-18B Electron-Photon Monte Carlo Technique,”
SLA-73-0834, Sandia National Laboratories, November 1973.

5. J. A. Halbleib and W. H. Vandevender, Nuc1. Sci. Eng. fl, 94 (1975).

6. J. A. Halbleib and W. H. Vandevender, Nucl. Sci. Eng. 61, 288
(1976) .

7. J. A. Halbleib, Nucl. Sci. Eng. 75, 200 (1980).

8. W. Guber, J. Nagel, R. Goldstein, P. S. Mettelman and M. H. Kales,
“A Geometric Description Technique Suitable for Computer Analysis of
Both the Nuclear and Conventional Vulnerability of Armored Military
Vehicles,” MAGI-6701, Mathematical Applications Group, Inc., August
1967.

9. E. A. Straker, W. H. Scott, Jr. and N. R. Byrn, “The MORSE Code with
Combinatorial Geometry, ” SAI-72-511-LJ (DNA 2860T), Science
Applications, Inc., May 1972.

10. J. A. Halbleib and J. E. Morel, Nucl. Sci. Eng. ~, 219 (1979).

11. J. A. Halbleib and J. E. Morel, Sandia National Laboratories,
unpublished.

12. H. M. Colbert, “SANDYL: A Computer Code for Calculating Combined
Photon-Electron Transport in Complex Systems, ’’SLL-74-()()l2,Sandia
National Laboratories, May 1974.

13. J. A. Halbleib, Sr., and W. H. Vandevender, J. Appl. Phys. ~, 2312
(1977)

14. L. F. Shampine, H. A. Watts and S. Davenport, SIAM Rev. ~, 376
(1976) .

125

15. K. L. Hiebert and L. F. Shampine, “Implicitly Defined Output Points
for Solutions of ODES,” SAND80-0180, Sandia National Laboratories,
February 1980.

16. J. A. Halbleib, Sandia National Laboratories, unpublished.

17. J. A. Halbleib, Nucl. Sci. Eng. 66, 269 (1978).

18. J. A. Halbleib, Sandia National Laboratories, unpublished.

19. T. A. Mehlhorn and J. A. Halbleib, “Monte Carlo Benchmark
Calculations of Energy Deposition by Electron/Photon Showers up to
1 GeV,” Proceedings of a Topical Meeting on Advances in Reactor

Computations, ISBN 0-89448-111-8, March 1983, p. 608.

20. J. A. Halbleib and T. A. Mehlhorn, “ITS : The Integrated TIGER

Series of Coupled Electron/Photon Monte Carlo Transport Codes,”
Sandia National Laboratories Report No. SAND84-0573, November 1984.

21. J. A. Halbleib and T. A. Mehlhorn, “ITS: The Integrated TIGER
Series of Coupled Electron/Photon Monte Carlo Transport Codes,”
Nucl. Sci. Eng., Vol. 92, No. 2, p. 338, February 1986.

22. J. A. Halbleib, Monte Carlo Transport of Electrons and Photons
(Edited by T. M. Jenkins, W. R. Nelson, and A. Rindi), New York:
Plenum Press, 1988, pp. 249-284.

23. ITS Code Package CCC-467, Radiation Shielding Information Center,
Computer Code Collection, Oak Ridge National Laboratory, January
1985.

24. “UPDATE, VERSION 1, Reference Manual,” Revision 11/23/81, Report No.
60449900, Control Data Corporation.

25. T. A. Mehlhorn and M. F. Young, “UPEML Version 3.0: A
Machine-Portable CDC UPDATE Emulator,” SAND92-0073, Sandia National
Laboratories, March 1992.

26. P. A. Watterberg, “WEASEL Reference Manualj” Internal Report, Sandia
National Laboratories.

27. F. Biggs and R. Lighthill, “Analytical Approximations for X-Ray
Cross Sections II,” SC-RR-71 0507, Sandia National Laboratories,
December 1971.

28. F. Biggs and R. Lighthill, “Analytical Approximations for Total
Pair-Production Cross Sections, ” SC-RR-68-619, Sandia National
Laboratories, September 1968.

29. J. H. Hubbell, H. A. Gimm and I. $7herb$,J. Phys. Chem. Ref. Data~,
1023 (1980).

126

30. T. A. Carlson, Photoelectron and Auzer S~ectrosco~v (Plenum Press,
New York, 1975).

31. L. G. Haggmark, C. J. MacCallum and M. E. Riley, Trans. Am. Nucl.
Sot. I-9, 471 (1974).

32. R. M. Sternheimer and R. F. Peierls, Phys. Rev. B3, 3681 (1971).

33. H. Kolbensvedt, J. Appl. Phys. ~, 4785 (1967).

34. M. Gryzinski, Phys. Rev. 138, A305, A322, A336 (1965); Phys. Lett.
~, 35 (1972).

35. D. H. Rester and W. E. Dance, “Electron Scattering and
Bremsstrahlung Cross Sections,” CR-759, National Aeronautics and
Space Administration (April 1967).

36. H. Aiginger, Z. Fur Physik~, 8 (1966),

37. J. A. Halbleib, J. Appl. Phys. 45, 4103 (1974).

38. J. A. Halbleib and W. H. Vandevender, IEEE Trans. Nucl. Sci. NS-22,
2356 (1975).

39. J. A. Halbleib, Bull. Am. Phys. Sot. 26, 1062 (1981).

40. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading,
Massachusetts, 1959), p. 107.

41. S. M. Seltzer and M. J. Berger, Nucl, Instr. Meth ~, 95 (1985).

42. S. M. Seltzer and M. J. Berger, Atom. Data and Nucl. Data Tables 35,
345 (1986).

43. S. M. Seltzer, in Monte Carlo Transport of Electrons and Photons
(Plenum Press, NY), p. 81 (1988).

44. R. H. Pratt, H. K. Tseng, C. M. Lee, L. Kissel, C. MacCallum, and M.
Riley, Atom. Data and Nucl. Data Tables 20, 175 (1977); errata in
~, 477 (1981).

45. H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev. ~, 788
(1954) .

46. H. Olsen, Phys. Rev. 99, 1335 (1955).

47. G. Elwert, Ann. Physik ~ 178 (1939).

48. R. J. Jabbur and R. H. Pratt, Phys. Rev. ~, B109O (1965).

127

49. J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T.
Cromer, and R. J. Howerton, J. Phys. Chem. Ref. Data ~, 471 (1975);
errata in~, 615 (1977).

50. J. H. Hubbell and I. @erb$, J. Phys. Chem. Ref. Data tl,69 (1979).

51. H. K. Tseng and R. H. Pratt, Phys. Rev. w, 1525 (1979).

52. E. Haug, Z. Naturforsch. 30aL 1099 (1975).

53. J. A. Wheeler and W. E. Lamb, Phys. Rev. 55, 858 (1939); errata in
~, (1956).

54. S. M. Maxon and E. G. Corman, Phys. Rev. ~, 156 (1967).

55. M. J. Berger and S. M. Seltzer, Phys, Rev. m 621 (1970).

56. M. J. Berger and S. M. Seltzer, National Bureau of Standards Report
NBSIR 82-2550-A, (1983).

57. ICRU (International Commission on Radiation Units and Measurements)
Report 37 (1984).

58. N. E. Holden, Pure Appl. Chem. 51-,405 (1979).

59. R. M. Sternheimer, Phys. Rev. 88, 851 (1952).

60. L. Landau, J. Phys. (USSR) Q, 201 (1944).

61. W. B5rsch-Supan, J. Res. National Bureau of Standards ~ 245
(1961) .

62. S. M. Seltzer, in Monte Carlo Transport of Electrons and Photons
(plenum Press, NY), p. 153 (1988).

63. 0. Blunck and S. Leisegang, Z. Physik 128, 500 (1950).

64. S. M. Seltzer, Appl. Radiat. Isot. 42, No. 10, pp. 917-941 (1991).

65. V. A. Chechin and V. C. Ermilova, Nucl. Instr. Meth. 136. 551
(1976) .

66. J. H. Scofield, Lawrence Livermore National Laboratory Report
UCRL-51326 (1973).

67. J. H. Hubbell, Radiat. Res 70 58 (1977)..—!

68. J. H. Hubbell, Int. J. Appl. Radiation & Isotopes 33, 1269 (1982).

69. E. B. Saloman and J. H. Hubbell, National Bureau of Standards Report
NBSIR 86-3431 (1986).

128

70. E. B. Saloman and J. H. Hubbell, Nucl. Instr. Meth. A255 38 (1987).—?

71. M. J. Berger and J. H. Hubbell, Nation Bureau of Standards Report
NBSIR 87-3597, (1987).

72. H. Kahn, Rand Corp. Research Memoradum RM-1237-AEC, (1956).

73. L. Koblinger, Nucl. Sci. Eng. ~, 218 (1975).

74. J. S. Hendricks, Nucl. Sci. Eng. w, 86-91 (1991).

129

DISTRIBUTION:

1163
1231

1231
1238
1240
1241

1241
1243
1248
1272

1272
1265

1265
1277

1277
1277
1270
1271

1273

1275

1290
1332
1421
1820
1943
2520
2525
3400
3437
5020
5023

5032
5032
5100
5501
6310
6320
6340
6410
6420
6428

R. C. Hughes
J. Maenchen

Attn: staff
T. W. L. Sanford
D. L. Johnson
K. R. Prestwich
C. L. Olson
Attn: staff

J. W. Poukey
E. L. Neau
M. T. Buttram
T. A. Mehlhorn

Attn: staff
L. P. Mix
J. P. Quintenz

Attn: staff
M. A. Sweeney
R. J. Leeper

Attn: staff
G. T. Baldwin
D. L. Fehl
J. K. Rice
M. K. Matzen

Attn: staff
D. H. McDaniel

Attn: staff
R. A. Gerber

Attn: staff
T. H. Martin
P. S. Winokur
S. J. Plimpton
J. Q. Searcy
W. H. Vandevender
N. J. Magnani
R. J. Walko
J. D. Martin
R. G. Baca
C. W. Childers
C. A. Searls
Attn: staff

H. M. Sanger
D. R. Waymire
J. L. Wirth
T. N. Simmons
T. Blejwas
R. E. Luna
W. D. Weart
D. A. Dahlgren
W. B. Gauster
R. T. McGrath

130

6450
6451
6452

6453

6454
6460
6461
6462
6462
6465

6465
6470
6473
6620
7713

7714

7722
8341
8347
8433
8541
9000
9100
9210
9220
9230
9240
9241
9241
9300
9302
9310
9312

9312
9312
9313
9340
9341

9341
9341
9341
9341
9341
9341

T. R. Schmidt
J. W. Bryson
T. F. Luera

Attn: staff
D. Coats
Attn: staff

G. L. Cano
J. V. Walker
P. J. McDaniel
P. S. Pickard
D. A. McArthur
J. H. Lee

Attn: staff
R. E. Pepping
D. J. McCloskey, Actg.
B. L. Spletzer
D. L. Berry
G. E. Tucker

Attn: staff
H. N. JOW

Attn: staff
G. E. Chavez
A. J. Antolak
K. L. Wilson
M. H. Rogers
A. M. F. Lau
G. Yonas
R. G. Clem
H. M. Dumas
G. H. Mauth
L. S. Walker
P. A. Stokes
T. P. Wright
S. A. Dupree
J. E. Powell
L. M. Choate
J. D. Plimpton
K. M. Glibert

Attn: staff
G. S. Mills
T. J. Tanaka
S. R. Dolce
W. Beezhold
J. R. Lee

Attn: staff
W. P. Ballard
D. E. Beutler
J. A. Halbleib (35)
R. P. Kensek (35)
D. Knott
L. J. Lorence

131

9341
9341
9343
9350
9351

9351
9351
9352

9352
9352
9352
9352
9510
9520
9560

P. S. Raglin
G. D. Valdez (20)
V. Harper-Slaboszewicz
J. H. Renken
E. F. Hartman

Attn: staff
J. J. Hohlfelder
L. D. Posey
G. J. Scrivner

Attn: staff
C. R. Drumm
W. C. Fan
S. B. Roeske
C. N. Vittitoe
C. C. Hartwigsen
J. W. Kane
J. R. Kelsey

3145 Document Processing, DOE/OSTI (8)
3141 S. A. Landenberger (5)
3151 G. C. Claycomb (3)
8523-2 Central Technical Files

132

	ABSTRACT
	ACKNOWLEDGEMENTS
	Preface to Version 3.0
	Monte Carlo Codes
	Cross-Section Generator Codes

	TABLE OF CONTENTS
	1. Introduction
	1.1 History of the TIGER Series
	1.2 Overview of the ITS Code Packaze
	1.3 Overview of the Document

	2, Operation
	2,1 Syntax
	2.2 Running a Cross-Section Generating Code
	2.3 Runninz a Monte Carlo Code
	2.4 Suzzestions for Efficient Operation
	2.5 Output
	2.6 Availability

	3. Machine Portable Update Processor - UPEML
	3.1 Structure of the ProEram Libraries
	3.2 The Creation Run
	3,3 Correction Runs

	4. Monte Carlo Program File - ITS
	4.1 Eight Codes
	4.2 Four Machines
	4.3 Free-Format Input
	4.4 Parameterizatiq
	4.5 Embellishments
	4.6 Additional Restructuring Subsequent to Version 1.0

	5. Cross-Section Generating File - XGEN
	6. Cross-Section Data File - XDATA
	7, Concluding Remarks
	Appendfx A: Installation
	Appendix B: Sample Input Streams
	Appendix C: TIGER Codes - Geometry
	Appendix D: CYLTRAN Codes - Geometry
	Appendix E: ACCEPT Codes - Geometry
	Appendix F: P Codes
	Appendix G: M Codes
	Appendix H: Biasing Options and Variance Reduction
	Appendix I: Plotting Capability
	Appendix J: Statistics
	Appendix K: Notes on Job Control Language - (JCL)
	Appendix L: Automatic Subzoning
	Appendix M: Cross-Section Improvements in Version 3.0
	Appendix N: Random Number Generators
	References
	DISTRIBUTION

